Mechanosensitive (MS) ion channels have been documented in a variety of cells belonging to Eukarya and Eubacteria. We report the novel finding of two types of MS ion channels in the cell membrane of the halophilic archaeon Haloferax volcanii, a member of the Archaea that comprise the third phylogenetic domain. The two channels, MscA1 and MscA2, differed in their kinetic properties with MscA1 exhibiting more frequent open-closed transitions than MscA2. Both channels have large conductances that rectify between -40 mV and +40 mV where the conductance of MscA1 ranged from 380 to 680 picosiemens, whereas MscA2 ranged from 850 to 490 picosiemens. Both channels were blocked by submillimolar gadolinium. In addition, the channels of either membrane vesicles or detergent-solubilized membrane proteins remained functional upon reconstitution into artificial liposomes, a result that indicates that these channels are activated by mechanical force transmitted via the lipid bilayer alone. Subsequently a 37-kDa protein corresponding to the MscA1 channel activity was purified. With the possible functional similarity to bacterial MS channels, our finding of MS channels in Archaea emphasizes the ubiquity and importance of these channels in all domains of the evolutionary tree.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.273.20.12116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!