Iterative reconstruction algorithms for helical CT are presented. The algorithms are derived from two-dimensional reconstruction algorithms, by adapting the projector/backprojector to the helical orbit of the source, and by constraining the axial frequencies with a Gaussian sieve. Simulations have been carried out and the performance of the iterative algorithms is compared to that of filtered backprojection of synthetic (interpolated) two-dimensional sinograms. The iterative algorithms produce superior bias-noise curves. Axial resolution is superior, but disturbing edge-artefacts are introduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/43/4/003 | DOI Listing |
Bioengineering (Basel)
January 2025
The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
The WHO grading of pancreatic neuroendocrine neoplasms (PanNENs) is essential in patient management and an independent prognostic factor for patient survival. Radiomics features from CE-CT images hold promise for the outcome and tumor grade prediction. However, variations in reconstruction parameters can impact the predictive value of radiomics.
View Article and Find Full Text PDFPhotoacoustics
February 2025
School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China.
Photoacoustic tomography (PAT) enables non-invasive cross-sectional imaging of biological tissues, but it fails to map the spatial variation of speed-of-sound (SOS) within tissues. While SOS is intimately linked to density and elastic modulus of tissues, the imaging of SOS distribution serves as a complementary imaging modality to PAT. Moreover, an accurate SOS map can be leveraged to correct for PAT image degradation arising from acoustic heterogeneities.
View Article and Find Full Text PDFJpn J Radiol
January 2025
Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
Purpose: To evaluate the effects of four-dimensional noise reduction filtering using a similarity algorithm (4D-SF) on the image quality and tumor visibility of low-dose dynamic computed tomography (CT) in evaluating breast cancer.
Materials And Methods: Thirty-four patients with 38 lesions who underwent low-dose dynamic breast CT and were pathologically diagnosed with breast cancer were enrolled. Dynamic CT images were reconstructed using iterative reconstruction alone or in combination with 4D-SF.
Phys Med
January 2025
Medical Physics Unit, ASST Monza, Monza, Italy.
Purpose: Digital Breast Tomosynthesis (DBT) is an advanced mammography technique for which there are currently no internationally agreed methods and reference values for image quality assessment. The aim of this multicentre study was to evaluate a simple method to assess the technical image quality of reconstructed and synthetic 2D (SM) images of different models of DBT systems using commercially available phantoms.
Methods: The signal difference to noise ratio (SDNR) was chosen as an index of technical image quality and was evaluated for three commercial phantoms, Tomophan, Tormam and CIRS model 015, on 55 DBT systems (six vendors, nine models).
Quant Imaging Med Surg
January 2025
Department of Imaging Medicine and Nuclear Medicine, Shandong Second Medical University, Weifang, China.
Background: Rapid kilovolt (kV)-switching dual-energy computed tomography (DECT) has been increasingly applied to the measurement of lumbar spine bone mineral density (BMD) in humans and animal models. The objective of this study was to investigate the optimal parameters for the measurement of vertebral BMD. The BMD of the spinal model was measured by means of DECT in combination with different noise index (NI) and preset adaptive statistical iterative reconstruction Veo (ASiR-V) levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!