Assay of protein-bound lipoic acid in tissues by a new enzymatic method.

Anal Biochem

Department of Radiochemistry-Biophysics, Niigata College of Pharmacy, Japan.

Published: May 1998

A new enzymatic method for the determination of protein-bound lipoic acid was established. Bound lipoyl groups were liberated in the form of lipoyllysine by protease digestion and assayed by lipoamide dehydrogenase (NADH:lipoamide oxidoreductase, EC 1.8.1.4)-mediated NADH oxidation. NADH oxidation was coupled to reduction of the lipoyl disulfide group. Fluorescence kinetics of NADH oxidation were markedly enhanced by the addition of glutathione disulfide, recycling the enzyme-mediated lipoyl/dihydrolipoyl conversion. In the presence of a large excess of glutathione disulfide, NADH oxidation follows pseudo-first-order kinetics in terms of lipoyllysine concentration. A good linear correlation is obtained between the oxidation rate and lipoyllysine concentration up to 5 microM and the calibration curve indicates that the detection limit could be 100 nM lipoyllysine. The method was applied to protease lysates of bovine, rat, and rabbit tissues to determine lipoyllysine levels. Kidney and liver were found to have the highest content of lipoyllysine in the range of 3.9 to 4.6 nmol/g rat or rabbit wet tissue or 11.6 to 13.1 nmol/g bovine acetone powder.

Download full-text PDF

Source
http://dx.doi.org/10.1006/abio.1998.2615DOI Listing

Publication Analysis

Top Keywords

nadh oxidation
16
protein-bound lipoic
8
lipoic acid
8
enzymatic method
8
glutathione disulfide
8
lipoyllysine concentration
8
rat rabbit
8
lipoyllysine
6
oxidation
5
assay protein-bound
4

Similar Publications

Insulin resistance and diabetes are associated with non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) conditions, which are distinguished by metabolic dysfunction, oxidative stress and inflammation. Sirtuin 1 (SIRT1), a NAD-dependent deacetylase, is fundamental in regulating metabolic pathways, reducing inflammation, and improving antioxidant defenses. This is the first study to investigate the effects of SRT1720, a SIRT1 activator, in diabetic rats on a high-fat diet.

View Article and Find Full Text PDF

Age-related hearing loss (ARHL) is a widespread problem in the elderly, significantly impairing their quality of life. Despite its high prevalence, no fundamental treatment for ARHL has been established. Nicotinamide adenine dinucleotide (NAD) is required for various biological processes and tissue levels of the coenzyme NAD are known to decrease with age.

View Article and Find Full Text PDF

Rapid and accurate detection of Escherichia coli (E. coli) is critical for maintaining water quality, and protecting aquatic ecosystems and public health. This research focuses on the development of a Förster resonance energy transfer (FRET)-based "turn-on" fluorescent nanosensor for real time, sensitive detection of E.

View Article and Find Full Text PDF

Enzymatic reactions play an important role in numerous industrial processes, e.g., in food production, pharmaceuticals and the production of biofuels.

View Article and Find Full Text PDF

Sexual Dimorphism of Ethanol-Induced Mitochondrial Dynamics in Purkinje Cells.

Int J Mol Sci

December 2024

Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, 685 Baltimore St., Baltimore, MD 21201, USA.

The cerebellum, a key target of ethanol's toxic effects, is associated with ataxia following alcohol consumption. However, the impact of ethanol on Purkinje cell (PC) mitochondria remains unclear. To investigate how ethanol administration affects mitochondrial dynamics in cerebellar Purkinje cells, we employed a transgenic mouse model expressing mitochondria-targeted yellow fluorescent protein in Purkinje cells (PC-mito-eYFP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!