Current concepts and issues in Diamond-Blackfan anemia.

Curr Opin Hematol

Laboratoire d'Hematologie, Centre Hospitalier Bicêtre, Le Kremlin-Bicêtre, France.

Published: March 1998

Diamond-Blackfan anemia, although rare, has been the focus of much attention with respect to both its clinical features and the characterization of the in vitro erythroid defect. Despite this, its pathophysiology is still unclear, and the treatment of steroid-refractory patients is still unsatisfactory. The recent chromosomal localization of a gene for familial Diamond-Blackfan anemia represents an important step forward toward the elucidation of this disorder. Therapeutic advances will depend on the development of collaborative studies, employing consensus criteria for diagnosis and response to therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00062752-199803000-00005DOI Listing

Publication Analysis

Top Keywords

diamond-blackfan anemia
12
current concepts
4
concepts issues
4
issues diamond-blackfan
4
anemia diamond-blackfan
4
anemia rare
4
rare focus
4
focus attention
4
attention respect
4
respect clinical
4

Similar Publications

Diamond Blackfan anemia (DBA) is an autosomal dominant disorder with a heterogeneous clinical presentation which may include macrocytic anemia typically presenting in the first year of life, growth retardation, and congenital malformations in 30%-50% of patients. This phenotypic variability is partially explained by genotype-phenotype correlations, with several ribosomal protein genes implicated in this disorder. Most cases are due to de novo variants, but familial occurrences highlight variable expressivity and reduced penetrance.

View Article and Find Full Text PDF

Diagnosis of Diamond-Blackfan anemia in adulthood: case series and review of the literature.

Orphanet J Rare Dis

December 2024

Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.

Diamond-Blackfan anemia (DBA) is a rare constitutional inherited bone marrow failure syndrome (iBMF) characterized by progressive severe non-regenerative anemia and congenital abnormalities. Diagnosis is made by identification of a DBA-causing variant, typically in a ribosomal protein gene. More than 99% of patients are diagnosed in the pediatric age, but clinical manifestation may be mild and severe anemia can occur later in the patient's life.

View Article and Find Full Text PDF

Introduction: Diamond Blackfan anaemia (DBA) is a rare disorder characterized by failure of red blood cell production, congenital abnormalities and cancer predisposition, primarily caused by pathogenic germline variants in genes encoding ribosomal proteins.

Methods: We conducted a genotype-phenotype and outcome study of 121 patients with DBA spanning the 20-year history of the National Cancer Institute's Inherited Bone Marrow Failure Syndromes study. Patient phenotypes were compared by large versus small ribosomal protein genes, across genes with >5 cases (, , and ) and by type of pathogenic variants (hypomorphic versus null, large deletions versus others).

View Article and Find Full Text PDF

Diamond-Blackfan anemia syndrome (DBAS) is an inherited bone marrow failure disorder caused by haploinsufficiency of ribosomal protein genes, most commonly RPS19. Limited access to patient hematopoietic stem/progenitor cells (HSPCs) is a major roadblock to developing novel therapies for DBAS. We developed a novel self-inactivating third-generation RPS19-encoding lentiviral vector (LV), termed "SJEFS-S19", for DBAS gene therapy.

View Article and Find Full Text PDF

BRAF inhibitors enhance erythropoiesis and treat anemia through paradoxical activation of MAPK signaling.

Signal Transduct Target Ther

December 2024

The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.

Article Synopsis
  • * Researchers developed a screening system to find new erythropoiesis-stimulating agents and discovered that BRAF inhibitors used for melanoma can boost progenitor cell growth by slowing down their differentiation into red blood cells, especially in severe cases like DBA.
  • * The study revealed that while BRAF inhibitors usually interfere with the MAPK pathway in cells with BRAF mutations, they actually enhance the pathway in normal BRAF cells, showing
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!