Numerous neurotransmitters are involved in nociceptive transmission or regulation. Several reports have shown the analgesic effects of somatostatin and its analogues. Somatostatin, when given intrathecally, markedly reduced pain in cancer patients. Somatostatin analogues that possess a longer half-life time are more convenient for therapeutic use. Vapreotide, a somatostatin analogue, was shown to induce a long-lasting antinociceptive effect in rats. We studied the site and the mechanism of action of vapreotide in rats using the paw pressure test. Intrathecal administration of vapreotide induced no antinociception. Systemically administered vapreotide-induced antinociception was inhibited by several intrathecal (i.t.) administered antagonists (yohimbine, naloxone and to a lesser degree tropisetron). These results show a lack of spinal effect and suggest a supraspinal site of action with an involvement of noradrenergic and to a lesser degree serotonergic bulbospinal pathways. In addition, spinal opioid receptors also seen to be involved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1472-8206.1998.tb00942.x | DOI Listing |
Exp Neurol
August 2024
Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA. Electronic address:
High spinal cord injury (SCI) leads to persistent and debilitating compromise in respiratory function. Cervical SCI not only causes the death of phrenic motor neurons (PhMNs) that innervate the diaphragm, but also damages descending respiratory pathways originating in the rostral ventral respiratory group (rVRG) located in the brainstem, resulting in denervation and consequent silencing of spared PhMNs located caudal to injury. It is imperative to determine whether interventions targeting rVRG axon growth and respiratory neural circuit reconnection are efficacious in chronic cervical contusion SCI, given that the vast majority of individuals are chronically-injured and most cases of SCI involve contusion-type damage to the cervical region.
View Article and Find Full Text PDFSpine J
October 2024
Department of Biological Sciences, National Sun Yat-sen University, No. 70, Lien-Hai Rd., Kaohsiung city 804, Taiwan.
Background: Cervical spinal cord injury usually results in cardiorespiratory dysfunctions due to interruptions of the bulbospinal pathways innervating the cervical phrenic motoneurons and thoracic sympathetic preganglionic neurons.
Purpose: The present study aimed to evaluate the therapeutic effects of adrenergic agents on systemic and spinal hemodynamics during acute cervical spinal cord injury.
Study Design: In vivo animal study.
Unlabelled: High spinal cord injury (SCI) leads to persistent and debilitating compromise in respiratory function. Cervical SCI not only causes the death of phrenic motor neurons (PhMNs) that innervate the diaphragm, but also damages descending respiratory pathways originating in the rostral ventral respiratory group (rVRG) located in the brainstem, resulting in denervation and consequent silencing of spared PhMNs located caudal to injury. It is imperative to determine whether interventions targeting rVRG axon growth and respiratory neural circuit reconnection are efficacious in chronic cervical contusion SCI, given that the vast majority of individuals are chronically-injured and most cases of SCI involve contusion-type damage to the cervical region.
View Article and Find Full Text PDFRev Neurosci
April 2024
Department of Physiology, Army Medical University (Third Military Medical University), Chongqing 400038, China.
Clinical studies have shown that individuals with spinal cord injury (SCI) are particularly susceptible to infectious diseases, resulting in a syndrome called SCI-induced immunodeficiency syndrome (SCI-IDS), which is the leading cause of death after SCI. It is believed that SCI-IDS is associated with exaggerated activation of sympathetic preganglionic neurons (SPNs). After SCI, disruption of bulbospinal projections from the medulla oblongata C1 neurons to the SPNs results in the loss of sympathetic inhibitory modulation from the brain and brainstem and the occurrence of abnormally high levels of spinal sympathetic reflexes (SSR), named sympathetic hyperreflexia.
View Article and Find Full Text PDFFront Neurol
October 2023
School of Rehabilitation Medicine, Capital Medical University, Beijing, China.
Respiratory difficulties and mortality following severe cervical spinal cord injury (CSCI) result primarily from malfunctions of respiratory pathways and the paralyzed diaphragm. Nonetheless, individuals with CSCI can experience partial recovery of respiratory function through respiratory neuroplasticity. For decades, researchers have revealed the potential mechanism of respiratory nerve plasticity after CSCI, and have made progress in tissue healing and functional recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!