The GnRH receptor (GnRH-R) belongs to the rhodopsin/beta-adrenergic family of G protein-coupled receptors. The intracellular domains of these receptors, particularly the regions closest to the plasma membrane in intracellular loops 2 (2i) and 3 (3i) as well as some regions located in the membrane-proximal end of the COOH-terminus, are frequently important sites for G protein coupling and specificity determination. Although studies in mouse and human GnRH-R have identified loop 2i as a critical determinant for coupling the receptor to the G(q/11)-mediated signal transduction pathway, given the functional similarity among the members of this particular G protein-coupled receptor subfamily and the fact that the GnRH-R lacks the typical intracellular COOH-terminal domain of its superfamily (a potential site for G protein coupling), we investigated the possibility that loop 3i of this receptor also participates in GnRH-R coupling to G proteins. GGH(3)1' cells, a pituitary-derived cell line that expresses a functional rat GnRH-R coupled to both Gs and G(q/11) proteins, were transiently transfected with a plasmid DNA containing a complementary DNA (cDNA) coding for the entire loop 3i of the GnRH-R as well as with other expression plasmids containing cDNAs encoding loop 3i of other Gs-, G(i/o)-, or G(q/11)-coupled receptors. The effects of coexpression of these loops with the wild-type GnRH-R on inositol phosphate (IP) production, cAMP accumulation, and PRL release were then examined. Transfection of GGH(3)1' cells with the cDNA for loop 3i of the rat GnRH-R (efficiency, 35-45%) maximally inhibited buserelin-stimulated IP turnover by 20% as well as cAMP accumulation and PRL secretion by 30%. This attenuation in cellular responses to a GnRH agonist was statistically significant (P < 0.05) compared with the responses exhibited by GGH(3)1' cells transfected with a control plasmid and stimulated with the same GnRH agonist. Transfection of minigenes coding for loop 3i of the M1Ach-muscarinic and the alpha1B-adrenergic (G(q/11)-coupled) receptors resulted in 25-55% inhibition of maximal GnRH-evoked IP turnover. Paradoxically, loop 3i from the M1Ach-muscarinic receptor also maximally inhibited GnRH agonist-stimulated cAMP accumulation and PRL release by 40% (both effects mediated through activation of the Gs protein). Transfection of loop 3i from the D1A -dopamine receptor (coupled to the Gs protein) produced a selective attenuation (40%) in Gs-mediated cellular responses. In contrast, receptor/G protein coupling appeared unaffected by expression of loop 3i domains derived from two receptors coupled to G(i/o) proteins (M2Ach-muscarinic and alpha2A-adrenergic receptors). These data indicate that the third intracellular loop of the rat GnRH-R is involved in receptor G(q/11) protein coupling and/or selectivity, and in the GGH(3)1' cell line, this loop is also involved in signal transduction mediated through the Gs protein pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo.139.5.6022DOI Listing

Publication Analysis

Top Keywords

protein coupling
16
loop
13
loop rat
12
signal transduction
12
ggh31' cells
12
rat gnrh-r
12
camp accumulation
12
accumulation prl
12
receptor
9
gnrh-r
9

Similar Publications

Background: Traumatic Brain Injury (TBI) is one of the most common nonheritable causes of Alzheimer's disease (AD). However, there is lack of effective treatment for both AD and TBI. We posit that network-based integration of multi-omics and endophenotype disease module coupled with large real-world patient data analysis of electronic health records (EHR) can help identify repurposable drug candidates for the treatment of TBI and AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

GloNeuro Academy, Noida, Uttar Pradesh, India.

Background: Alzheimer's disease (AD) remains a formidable neurodegenerative challenge, characterized by profound cognitive decline. Despite decades of research, effective disease-modifying therapies are elusive. Recent advances in molecular neuropharmacology have unveiled potential therapeutic targets for AD, offering renewed hope.

View Article and Find Full Text PDF

Photocurrent Generation by Plant Light-Harvesting Complexes is Enhanced by Lipid-Linked Chromophores in a Self-Assembled Lipid Membrane.

J Phys Chem B

January 2025

Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

The light-harvesting pigment-protein complex II (LHCII) from plants can be used as a component for biohybrid photovoltaic devices, acting as a photosensitizer to increase the photocurrent generated when devices are illuminated with sunlight. LHCII is effective at photon absorption in the red and blue regions of the visible spectrum, however, it has low absorption in the green region (550-650 nm). Previous studies have shown that synthetic chromophores can be used to fill this spectral gap and transfer additional energy to LHCII, but it was uncertain whether this would translate into an improved performance for photovoltaics.

View Article and Find Full Text PDF

Objectives: External quality assessment (EQA) programs play a pivotal role in harmonizing laboratory practices, offering users a benchmark system to evaluate their own performance and identify areas requiring improvement. The objective of this study was to go through and analyze the UK NEQAS "Immunology, Immunochemistry and Allergy" EQA reports between 2012 and 2021 to assess the overall level of harmonization in autoimmune diagnostics and identify areas requiring improvement for future actions.

Methods: The EQA programs reviewed included anti-nuclear (ANA), anti-dsDNA, anti-centromere, anti-extractable nuclear antigen (ENA), anti-phospholipids, anti-neutrophil cytoplasm (ANCA), anti-proteinase 3 (PR3), anti-myeloperoxidase (MPO), anti-glomerular basement membrane (GBM), rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA), mitochondrial (AMA), liver-kidney-microsomal (LKM), smooth muscle (ASMA), APCA, and celiac disease antibodies.

View Article and Find Full Text PDF

Cold atmospheric plasma potentiates ferroptosis via EGFR(Y1068)-mediated dual axes on GPX4 among triple negative breast cancer cells.

Int J Biol Sci

January 2025

Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.

Cold atmospheric plasma (CAP) has been proposed as an emerging onco-therapeutics that can specifically kill cancer cells without harming healthy cells. Here we explore its potency in triggering ferroptosis in transformed cells using triple negative breast cancer as the disease model. Through the whole transcriptome sequencing, mass spectrometry analysis, point mutation, and a series of and molecular assays, we identified two signaling axes centered at EGFR(Y1068), i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!