We measured lower pulmonary resistance (Rlp) in eight dogs and three men breathing gas mixtures having different densities (p) and similar viscosities (mu). Rlp increased with gas density and with flow rate (V). In the dogs, these effects were not observed in lung segments subtended from 4-mm-ID bronchi; in more central airways, resistance varied approximately as (mup V)0.5. These results are compatible with Poiseuille flow in peripheral airways, and, in central airways, with flow resistance described by the equation of boundary layer growth. Rather than two discrete flow regimes, it is likely that flow patterns undergo a continual metamorphosis as Reynolds' numbers (Re) decrease between trachea and alveoli. Accordingly, the airways pressure-flow relationship is not described by any single fluid dynamics equation, but may be explained by the general equation, P = Kmu2-apa-1Va, where a reflects the proportion of inertial to viscous pressure losses and varies between 1 and 2 according to Re. Rohrer's equation described the observed pressure-flow relationships and predicted the change in Rlp with gas physical properties, suggesting a physical basis underlying this adequate mathematical description.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jappl.1976.41.2.234DOI Listing

Publication Analysis

Top Keywords

gas physical
8
physical properties
8
lower pulmonary
8
pulmonary resistance
8
central airways
8
flow
6
gas
4
properties flow
4
flow lower
4
resistance
4

Similar Publications

Selective Detection of Formaldehyde and Nitrogen Dioxide Using Innovative Modeling of SnO Surface Response to Pulsed Temperature Profile.

Sensors (Basel)

December 2024

Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS), Université de Toulouse, CNRS, UPS, 7 Avenue du Colonel Roche, 31031 Toulouse, France.

The need for odor measurement and pollution source identification in various sectors (aeronautic, automobile, healthcare…) has increased in the last decade. Multisensor modules, such as electronic noses, seem to be a promising and inexpensive alternative to traditional sensors that were only sensitive to one gas at a time. However, the selectivity, the non-repetitiveness of their manufacture, and their drift remain major obstacles to the use of electronic noses.

View Article and Find Full Text PDF

In this paper, we investigated the efficient metal-free phosphorus-nitrogen (PN) catalyst and used the PN catalyst to degrade waste PU with two-component binary mixed alcohols as the alcohol solvent. We examined the effects of reaction temperature, time, and other factors on the hydroxyl value and viscosity of the degradation products; focused on the changing rules of the hydroxyl value, viscosity, and molecular weight of polyols recovered from degradation products with different dosages of the metal-free PN catalyst; and determined the optimal experimental conditions of reaction temperature 180 °C, reaction time 3 h, and PN dosage 0.08%.

View Article and Find Full Text PDF

Composite biopolymer hydrogel as food packaging material, apart from being environmentally favorable, faces high standards set upon food packaging materials. The feature that favors biopolymer film application is their low gas permeability under room conditions and lower relative humidity conditions. However, most biopolymer-based materials show high moisture sensitiveness and limited water vapor permeability, which limits their application for food packaging.

View Article and Find Full Text PDF

The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process.

View Article and Find Full Text PDF

The aim of this study was to investigate the effect of the addition of wild garlic leaves on the sensory quality, volatiles, color, and texture of sheep milk soft rennet-curd cheese. The sensory evaluation of color, appearance, texture, odor, and taste was performed using a 5-point scale. The intensity of selected taste and odor discriminants was also assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!