One molecule of a linker histone such as histone H1 is incorporated into every metazoan nucleosome [1]. Histone H1 has three distinct structural domains: the positively charged amino-terminal and carboxy-terminal tails are separated by a globular domain that is similar to the winged-helix motif found in sequence-specific DNA-binding proteins [2]. The globular domain interacts with DNA immediately contiguous to that wrapped around the core histones [3,4], whereas the tail domains are important for the compaction of nucleosomal arrays [5]. Experiments in vivo indicate that histone H1 does not function as a global transcriptional repressor, but instead has more specific regulatory roles [6-9]. In Xenopus, maternal stores of the B4 linker histone that are assembled into chromatin during the early cleavage divisions are replaced by somatic histone H1 during gastrulation [10]. This transition in chromatin composition causes the repression of genes encoding oocyte-type 5S rRNAs, and restricts the competence of ectodermal cells to differentiate into mesoderm [6,9-11]. Here, we demonstrate that the globular domain of histone H1 is sufficient for directing gene-specific transcriptional repression and for restricting the mesodermal competence of embryonic ectoderm. We discuss our results in the context of specific structural roles for this domain in the nucleosome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0960-9822(98)70206-4 | DOI Listing |
Mol Ther
December 2024
Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA. Electronic address:
J Biol Chem
December 2024
National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
Spatial organization of chromatin is essential for cellular functioning. However, the precise mechanisms governing sequence-dependent positioning of nucleosomes on DNA still remain unknown in detail. Existing algorithms, taking into account the sequence-dependent deformability of DNA and its interactions with the histone globular domains, predict rotational setting of only 65% of human nucleosomes mapped in vivo.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Sofia University "St. Kliment Ohridski", Faculty of Biology, Department of Biochemistry, Bulgaria. Electronic address:
C1q, the key component of the classical pathway of the Complement system, is known for its vast functional activity including clearance of apoptotic cells. The binding of C1q to apoptotic blebs occurs via an interaction with the phosphatidylserine externalized on the cell surface. In this study, we characterized the interaction between C1q and phosphatidylserine, with emphasis on the structure of the phosphatidylserine-binding site within the globular domains of C1q and the nature of binding of C1q with phosphatidylserine, using both in vitro and in silico methods.
View Article and Find Full Text PDFmBio
December 2024
Division of Intramural Research, Computational Biology Branch, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA.
Unlabelled: Metatranscriptomics is uncovering more and more diverse families of viruses with RNA genomes comprising the viral kingdom Orthornavirae in the realm Riboviria. Thorough protein annotation and comparison are essential to get insights into the functions of viral proteins and virus evolution. In addition to sequence- and hmm profile‑based methods, protein structure comparison adds a powerful tool to uncover protein functions and relationships.
View Article and Find Full Text PDFPhys Life Rev
December 2024
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation. Electronic address:
This review presents the current understanding of (i) spontaneous self-organization of spatial structures of protein molecules, and (ii) possible ways of chaperones' assistance to this process. Specifically, we overview the most important features of spontaneous folding of proteins (mostly, of the single-domain water-soluble globular proteins): the choice of the unique protein structure among zillions of alternatives, the nucleation of the folding process, and phase transitions within protein molecules. We consider the main experimental facts on protein folding, both in vivo and in vitro, of both kinetic and thermodynamic nature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!