This paper describes the in situ presence and distribution of collagen types I, III, IV and V in the bovine placenta. The objective was to determine whether there are qualitative and/or quantitative differences in the collagen content of placentomes originating from cows with retained placenta and cows with normal discharge of placenta. Twelve h post partum discharge of the placenta or the incidence of retained placenta was monitored. From 57 cows one placentome per cow was collected within 1 h post partum. The cows were divided into three groups: retained placenta after caesarean section (Group 1), retained placenta after spontaneous calving (Group 2) and normal discharge of placenta within 12 h post partum after spontaneous calving (Group 3). A pilot study was conducted to establish the technique of collecting the placentomes and to verify the applied immunohistological methods used in this work. In the following study, 32 placentomes were used to determine the amount of collagen (types I, III, IV and V) with qualitative and semi-quantitative methods using immunohistochemical techniques. Collagen types I, III, IV and V were found in large quantities in the maternal tissue. In the fetal connective tissue the amount of these collagen types was smaller. In the placentomes of the three groups, no qualitative or quantitative differences could be detected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1439-0442.1998.tb00795.x | DOI Listing |
J Dent Sci
December 2024
Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan.
Implanted biomaterials release inorganic ions that trigger inflammatory responses, which recruit immune cells whose biochemical signals affect bone tissue regeneration. In this study, we evaluated how mouse macrophages (RAW264, RAW) and mesenchymal stem cells (KUSA-A1, MSCs) respond to seven types of ions (silicon, calcium, magnesium, zinc, strontium, copper, and cobalt) that reportedly stimulate cells related to bone formation. The collagen synthesis, alkaline phosphatase activity, and osteocalcin production of the MSCs varied by ion dose and type after culture in the secretome of RAW cells.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, PR China; Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, PR China. Electronic address:
Hypertrophic scar (HS) is a disease with excessive skin fibrosis and collagen disorder, which is generally caused by abnormal wound repair process after burn and trauma. Although intralesional injection of 5-fluorouracil (5-Fu) has been used in clinical treatment of HS, the patients' compliance of injection treatment is poor. In this study, a double-layer dissolution microneedle (MN) containing asiaticoside (AS) and 5-Fu was designed for the treatment of HS.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China. Electronic address:
The healing of wounds in aging skin is a challenging issue that has not been thoroughly studied. Composite hydrogels made from natural polysaccharides have shown potential as dressings for various types of wounds. In this study, we prepared a polysaccharide-based composite hydrogel to provide a new strategy for treating aging skin wounds.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Physiology, College of Medicine Gyeongsang National University Jinju Republic of Korea.
Our previous study highlighted the anticancer potential of sea hare hydrolysate (SHH), particularly its role in regulating macrophage polarization and inducing pyroptotic death in lung cancer cells through the inhibition of signal transducer and activator of transcription 3 (STAT3). These findings prompted us to investigate additional features of immune-oncology (I-O) agents or adjuvants, such as programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibition and their association with rheumatoid arthritis (RA) risk, to explore the potential of SHH as an I-O agent or adjuvant. In this study, we investigated the effects of SHH on PD-L1 levels in various cancer cell types and assessed its effectiveness in treating RA, a common side effect of I-O agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!