Direct cell-cell interactions are fundamental for tissue development and differentiation. We have studied the expression and function of cadherins in human osteoblasts during in vitro differentiation. Using reverse transcription-polymerase chain reaction and mRNA hybridization, we found that human trabecular bone osteoblasts (HOBs), osteoprogenitor marrow stromal cells (BMCs), and the osteogenic sarcoma lines, SaOS-2 and MG-63, expressed mRNA for cadherin-11 (C11) and N-cadherin (N-cad). HOBs and BMCs also expressed low levels of cadherin-4 (C4) mRNA. C11 was the most abundant cadherin protein present in human osteoblasts, and its expression was unaffected by bone morphogenetic protein-2 (BMP-2) treatment of either BMCs or HOBs. Likewise, N-cad mRNA did not change during BMP-2 incubation. Conversely, C4 protein, undetectable in transformed cell lines, was down-regulated by BMP-2 treatment of normal cells. Both C11 and C4 were localized to sites of cell-cell contact in both HOBs and BMCs, colocalized with beta-catenin, and bands corresponding to cadherins were coimmunoprecipitated by a beta-catenin antibody, findings indicative of functional cadherins. A decapeptide containing the HAV motif of human N-cad partially inhibited Ca2+-dependent cell-cell adhesion and completely prevented BMP-2-induced stimulation of alkaline phosphatase activity by BMCs. Thus, human osteoblasts and their progenitor cells express a repertoire of multiple cadherins. Cadherin-mediated cell-to-cell adhesion is critical for normal human osteoblast differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1359/jbmr.1998.13.4.633DOI Listing

Publication Analysis

Top Keywords

human osteoblasts
16
express repertoire
8
hobs bmcs
8
bmp-2 treatment
8
human
7
cadherins
5
bmcs
5
osteoblasts express
4
repertoire cadherins
4
cadherins critical
4

Similar Publications

This study assessed the novel concept that osteoclast-derived Grem1 has regulatory functions in the skeletal response to calcium stress using an osteoclastic Grem1 conditional knockout (cKO) mouse model. The calcium stress was initiated by feeding cKO mutants and wildtype (WT) littermates a calcium-deficient diet for 2 weeks. Deletion of Grem1 in mature osteoclasts did not affect developmental bone growth nor basal bone turnover.

View Article and Find Full Text PDF

Effect of Eight Months of Swimming on Bone Quality of Different Anatomical Regions: A Study on Wistar Rat Models.

Calcif Tissue Int

January 2025

Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, (FADEUP), Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal.

Swimming is a popular sport with several health benefits, but its effects on bone quality are controversial possibly due to distinct effects on different anatomical regions. Our aim was to investigate the effect of 8-month swimming on bone growth, mass, geometry, trabecular microarchitecture and osteocyte density of the lumbar vertebrae, femur and tibia of male rats. Wistar rat models were assigned to either a swimming (n = 10; 2h/d, 5 d/week) or a physically active control group (n = 10) for 8 months, after which they were sacrificed and their lumbar vertebrae, femur and tibia assessed for bone mass, cortical geometry, trabecular microarchitecture and osteocyte density through µ-CT and histology.

View Article and Find Full Text PDF

The role of RGPR-p117, a transcription factor, which binds to the TTGGC motif in the promoter region of the regucalcin gene, in cell regulation remains to be investigated. This study elucidated whether RGPR-p117 regulates the activity of triple-negative human breast cancer MDA-MB-231 cells in vitro. The wild-type and RGPR-p117-overexpressing cancer cells were cultured in DMEM supplemented with fetal bovine serum.

View Article and Find Full Text PDF

Osteoporosis, recognised as a metabolic disorder, has emerged as a significant burden on global health. Although available treatments have made considerable advancements, they remain inadequately addressed. In recent years, the role of epigenetic mechanisms in skeletal disorders has garnered substantial attention, particularly concerning mA RNA modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!