In adult ascidians, the neural complex consists of a cerebral ganglion (the brain) and the associated neural gland. We have studied the development of the neural complex during the vegetative reproduction of the colonial ascidian Botryllus schlosseri, the buds of which arise from the atrial mantle of the parental zooid. Each bud develops into a new organism within which a neural complex becomes differentiated. We found that the presumptive (pioneer) nerve cells that ultimately form the cerebral ganglion of the adult arise as migratory cells from a primordial cluster of rudimentary gland cells. Hence, the neural gland appears to be neurogenic in that it serves as the cellular source of components that differentiate into conventional nerve cells. In the adult, these cells take on the form of a typical invertebrate ganglion with an outer cortex of nerve cell bodies and an internal medulla. This medulla consists of a neuropile of neuronal processes making classical synaptic contacts. The adult neural gland differentiates into a structure with a ciliated duct that opens into the branchial chamber, the body of the gland, and the dorsal organ, which is quite distinct from the dorsal strand of other ascidians. The rudimentary neural gland cells, therefore, differentiate into one of two distinct pathways: the first, glandular, is possibly involved in the evaluation of environmental signals, and the other, nervous, leads to brain formation. This compares with the vertebrate situation in which the olfactory-pituitary placodes are thought to originate from a common cellular source. Thus, these data support the earlier contention of a homology between the tunicate neural gland and the vertebrate adenohypophysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(sici)1096-9861(19980504)394:2<230::aid-cne7>3.0.co;2-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!