In view of a potential clinical use, we assessed the antiproliferative effect of paclitaxel on the human steroid-secreting NCI-H295 adrenocarcinoma cell line. By MTT, paclitaxel induced a dose-dependent inhibition of cell proliferation, with IC50 lower than blood levels of the drug achieved in patients treated for other malignancies. Cell exposure to paclitaxel for 24 h at the different IC50S produced a dose-responsive increase in DNA fragmentation, morphologically confirmed by electron microscopy. A time-dependent decrease in aldosterone, cortisol and testosterone was observed. Paclitaxel is an effective antiproliferative agent in this human adrenocortical carcinoma cell line. Apoptosis induced by the drug in involved in neoplastic cell death. A potential role of the drug in the treatment of patients with adrenocortical cancer could be considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000007104 | DOI Listing |
Front Oncol
January 2025
Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil.
Introduction: Intraperitoneal chemotherapy for ovarian cancer treatment has controversial benefits as most methodologies are associated with significant morbidity. We carried out a systematic review to compare tumor response, measured by tumor weight and volume, between intraperitoneal chemotherapy delivered via drug delivery systems (DDSs) and free intraperitoneal chemotherapy in animal models of ovarian cancer. The secondary aim was to assess the toxicity of DDS-delivered chemotherapy, based on changes in animal body weight.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Respiration, Liaocheng People's Hospital, Liaocheng, Shandong, China. Electronic address:
Lipid nanoparticles are getting a lot of attention in cancer treatment because they're good at delivering drugs and reducing side effects. These things are like a flexible platform for getting anticancer meds where they need to go, especially when you add HA, a polymer that's known to target tumors. Hyaluronic acid is good because it homes in on tumor cells by latching onto CD44 receptors, which are often overproduced in cancer.
View Article and Find Full Text PDFN Engl J Med
January 2025
From Bielefeld University, Medical School and University Medical Center Ostwestfalen-Lippe, Campus Hospital Lippe, Detmold, Germany (J.H.); the Department of Radiation Oncology, Medical University of Graz, Graz, Austria (T.B.); the Clinical Trials Unit, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany (C.S.); the Institute of Surgical Pathology, University Medical Center Freiburg, Germany (P.B.); the Department of Surgery, University Medical Center Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (B.K., T.K.); Comprehensive Cancer Center Augsburg, Faculty of Medicine, University of Augsburg, Augsburg, Germany (R.C.); the Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany (S.U.); the Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.R.I.); the Department of Gastrointestinal Surgery, IRCCS San Raffaele Scientific Institute and San Raffaele Vita-Salute University, Milan (I.G.); the Department of General, Visceral, Thoracic, and Endocrine Surgery, Johannes Wesling University Hospital Minden, Ruhr University Bochum, Minden, Germany (B.G.); the Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany (M.G.); the Department of General, Visceral, Thoracic, Transplantation, and Pediatric Surgery, University Medical Center Schleswig-Holstein-Campus Kiel, Kiel, Germany (B.R.); the Department of General, Visceral, Transplantation, Vascular, and Pediatric Surgery, University Hospital, University of Würzburg, Würzburg, Germany (J.F.L.); the Department of General, Visceral, Cancer, and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany (C.B.); the Department of Hematology and Oncology, Sana Klinikum Offenbach, Offenbach am Main, Germany (E.R.); the Department of Surgery, Klinikum Dortmund, Klinikum der Universität Witten-Herdecke, Dortmund, Germany (M.S.); the Department of Surgery, University Hospital Magdeburg, Magdeburg, Germany (F.B.); the Department of Medicine I, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany (G.F.); the Department of Hematology, Oncology, and Cancer Immunology, Charité-University Medicine Berlin, Campus Virchow-Klinikum, Berlin (P.T.-P.); the Department of General, Visceral, Cancer, and Transplantation Surgery, University Hospital Essen, Essen, Germany (U.P.N.); the Department of General, Visceral, and Transplantation Surgery, University Hospital Muenster, Muenster, Germany (A.P.); the Department of Radiotherapy and Oncology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany (D.I.); the Division of Gastroenterology, Rheumatology, and Infectology, Department of Medicine, Charité-Universitätsmedizin Berlin, Berlin (S.D.); the Department of Surgery, Robert Bosch Hospital, Stuttgart, Germany (T.S.); the Department of Surgery, University Medical Center Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany (C.K.); the Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany (S.Z.); the Department of General, Visceral, and Transplant Surgery, Ludwig Maximilian University Hospital, Munich, Germany (J.W.); the Department of Internal Medicine I, Klinikum Mutterhaus der Borromaerinnen, Trier, Germany (R.M.); the Departments of Hematology, Oncology, and Palliative Care, Klinikum Stuttgart, Stuttgart, Germany (G.I.); the Department of General, Visceral, and Transplant Surgery, University Medical Center Mainz, Mainz, Germany (P.G.); and the Department of Medicine II, University Cancer Center Leipzig, Cancer Center Central Germany, University Medical Center Leipzig, Leipzig, Germany (F.L.).
Background: The best multimodal approach for resectable locally advanced esophageal adenocarcinoma is unclear. An important question is whether perioperative chemotherapy is preferable to preoperative chemoradiotherapy.
Methods: In this phase 3, multicenter, randomized trial, we assigned in a 1:1 ratio patients with resectable esophageal adenocarcinoma to receive perioperative chemotherapy with FLOT (fluorouracil, leucovorin, oxaliplatin, and docetaxel) plus surgery or preoperative chemoradiotherapy (radiotherapy at a dose of 41.
Eur Heart J Case Rep
January 2025
Cardiology Department, Loyola University Medical Center, 2160 S 1st Ave, Maywood, IL 60153-3328, USA.
Background: Immune checkpoint inhibitors (ICIs) are effective antineoplastic agents but can cause adverse effects in many organ systems. Cardiovascular toxicities include arrhythmias, myocarditis, heart failure, takotsubo syndrome, pericarditis, coronary artery disease, and vasculitis.
Case Summary: A 66-year-old woman with Stage 3C2 endometrial carcinoma presented for her second cycle of pembrolizumab, carboplatin, and paclitaxel.
Front Oncol
January 2025
Research Institute, Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea.
Background: Oncologic outcomes of conversion surgery for advanced pancreatic cancer (PC) have scarcely been reported. Therefore, this study aimed to investigate the outcomes of conversion surgery with preoperative treatment of FOLFIRINOX or gemcitabine with nab-paclitaxel (GnP) for patients with advanced PC including locally advanced or metastatic PC.
Methods: Using the National Health Insurance database between 2005 and 2020, we identified patients who underwent conversion surgery after chemotherapy with FOLFIRINOX or GnP for advanced PC.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!