Incorporation of drugs for the treatment of substance abuse into pigmented and nonpigmented hair.

J Pharm Sci

Center for Human Toxicology, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City 84112, USA.

Published: April 1998

Hair analysis for drugs may be useful for the long-term monitoring of recidivism and treatment compliance. L-alpha-Acetylmethadol, buprenorphine, and methadone are drugs that are used for the treatment of substance abuse. The purpose of this study was to study the relationship between dose, plasma concentration, hair concentration, and hair pigmentation for these compounds and their major metabolites in an animal model. Male Long-Evans rats received either L-alpha-acetylmethadol (1 and 3 mg/kg; n = 6), buprenorphine (1 and 3 mg/kg; n = 5), or methadone (4 and 8 mg/kg; n = 5) by intraperitoneal injection daily for 5 days. Fourteen days after beginning drug administration, newly grown hair was collected and analyzed for either L-alpha-acetylmethadol and two metabolites (L-alpha-acetyl-N-normethadol and L-alpha-acetyl-N,N-dinormethadol), methadone and two metabolites (D,L-2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium and D,L-2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline), or buprenorphine and one metabolite (norbuprenorphine). The plasma time course (AUC) for each compound was also determined after a single administration of each drug at the specified doses. There was an approximate dose-dependent increase in measured hair concentration of each parent drug in pigmented hair. The concentrations of L-alpha-acetylmethadol, methadone, and buprenorphine in nonpigmented hair were significantly less than that measured in pigmented hair at either the high or low dose. The metabolites L-alpha-acetyl-N-normethadol and D,L-2-ethyl-1,5dimethyl-3,3-diphenylpyrrolinium were detected at lower concentrations than their respective parent compounds (L-alpha-acetylmethadol or methadone) in pigmented hair. However, the L-alpha-acetyl-N,N-dinormethadol metabolite concentrations in pigmented hair were significantly greater than those of the parent drug after either the low or the high L-alpha-acetylmethadol dose. These data demonstrate that L-alpha-acetylmethadol, methadone, buprenorphine, and metabolites are distributed into hair in a dose-related manner with a preference for pigmented hair.

Download full-text PDF

Source
http://dx.doi.org/10.1021/js970360tDOI Listing

Publication Analysis

Top Keywords

pigmented hair
20
hair
13
l-alpha-acetylmethadol methadone
12
drugs treatment
8
treatment substance
8
substance abuse
8
nonpigmented hair
8
concentration hair
8
hair concentration
8
metabolites l-alpha-acetyl-n-normethadol
8

Similar Publications

Background: Griscelli syndrome (GS) is a rare genetic disorder characterized by oculocutaneous albinism and variable immune dysfunction. Among three distinct types of GS, occurring due to different genetic mutations; GS type 1 presents with neurological manifestations, hemophagocytic lymphohistiocytosis (HLH) generally develops in GS type 2, and GS type 3 primarily exhibits oculocutaneous albinism. HLH, a life-threatening condition with excessive immune activation, may occur secondary to various triggers, including infections, and develop in different tissues, as well as in the testis, similar to Erdheim-Chester disease.

View Article and Find Full Text PDF

BMP4 regulates differentiation of nestin-positive stem cells into melanocytes.

Cell Mol Life Sci

January 2025

Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, China.

Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation.

View Article and Find Full Text PDF

Expression and Analysis of Gene in the Skin from Three Locations on Dun Mongolian Bider Horse.

Genes (Basel)

December 2024

Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China.

Background/objectives: The Mongolian horse, one of the oldest and most genetically diverse breeds, exhibits a wide variety of coat colors and patterns, including both wild-type and unique features. A notable characteristic of dun Mongolian horses is the presence of Bider markings-symmetrical, black-mottled patterns observed on the shoulder blades. These markings are also seen in Przewalski's horses.

View Article and Find Full Text PDF

Melanogenesis, the biological process responsible for melanin synthesis, plays a crucial role in determining skin and hair color, photoprotection, and serving as a biomarker in various diseases. While various factors regulate melanogenesis, the role of fatty acids in this process remains underexplored. This study investigated the anti-melanogenic properties of 10(E)-pentadecenoic acid (10E-PDA) through both in silico and in vitro analyses.

View Article and Find Full Text PDF

Homocystinuria is a disorder of methionine metabolism leading to abnormal accumulation of homocysteine and its metabolites in blood and urine. This condition presents with a wide range of cutaneous and systemic features. This case report focuses on the particular cutaneous finding of silvery hair in this patient and its examination under a microscope that reveals an unusual and not yet reported finding of melanin clumps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!