High-affinity uptake of glutamate from the synaptic cleft plays a crucial role in regulating neuronal activity in physiological and pathological conditions. We have used affinity-purified specific polyclonal antibodies raised against a synthetic peptide corresponding to the C-terminal region of rabbit and rat EAAC1, a glutamate (Glu) transporter believed to be exclusively neuronal, to investigate its cellular and subcellular localization and whether it is expressed exclusively in glutamatergic cells of infragranular layers, as suggested by previous studies. Light microscopic studies revealed that EAAC1 immunoreactivity (ir) is localized to neurons and punctate elements in the neuropil. EAAC1-positive neurons were more numerous in layers II-III and V-VI, i.e. throughout all projection layers. Most EAAC1-positive neurons were pyramidal, although nonpyramidal cells were also observed. Some EAAC1-positive non-pyramidal neurons stained positively with an antiserum to GAD, thus demonstrating that EAAC1 is not confined to glutamatergic neurons. Non-neuronal EAAC1-positive cells were also observed in the white matter, and some of them stained positively with an antiserum to GFAP. Ultrastructural studies showed that EAAC1-ir was in neuronal cell bodies, dendrites and dendritic spines, but not in axon terminals, i.e. exclusively postsynaptic. Analysis of the type of axon terminals synapsing on EAAC1-ir profiles showed that 97% of them formed asymmetric contacts, thus indicating that EAAC1 is located at the very sites of excitatory amino acid release. Unexpectedly, EAAC1-ir was also found in a few astrocytic processes located in both the gray and the white matter. The localization of EAAC1 may explain the pathological symptoms that follow EAAC knockout (seizures and mild toxicity), as seizures could be due to the loss of EAAC1-mediated fine regulation of neuronal excitability at axodendritic and axospinous synapses, whereas the mild toxicity may be related to the functional inactivation of astrocytic EAAC1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/8.2.108 | DOI Listing |
J Biophotonics
January 2025
Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy. Electronic address:
Cannabis derivatives are among the most widely used psychoactive substances in the world, which leads to growing medical concerns regarding its chronic use and abuse especially among adolescents. Exposure to THC during formative years produces long-term behavioral alterations that share similarities with symptoms of psychiatric and neurodevelopmental disorders. In this study, we have analyzed the functional and molecular mechanisms that might underlie these alterations.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Volgograd State Medical University, Volgograd, Russian Federation.
Background: Closely related to the subfamily of proapoptotic proteins is the antiapoptotic protein bcl-2, which acts as an intracellular blocker of the mitochondrial apoptotic pathway. By inhibiting the action of effector caspases, as well as blocking the release of AIF and cytochrome C, Bcl-2 prevents regulated cell death and ensures survival in conditions of damage.
Method: The study was performed on Wistar rats, which were subjected to gravitational overloads (9g) in the caudocranial vector for 5 minutes twice a day for 28 days.
Alzheimers Dement
December 2024
Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: Structural covariance analyses have identified macrostructural/morphological alterations to MRI-based networks in behavioral variant frontotemporal dementia (bvFTD), but microstructural/neuronal alterations to histology-based networks remain unexplored. We previously found greater neurodegeneration in layers and regions enriched for pyramidal neurons in bvFTD with tau (bvFTD-tau) compared to TDP-43 (bvFTD-TDP) pathology. Therefore, we hypothesized laminar networks of empirically connected pyramidal neurons are weaker in bvFTD-tau versus bvFTD-TDP.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Deficits in interneuron and cholinergic circuits are noted in AD pathology, yet the precise mechanisms of their contribution to cognitive decline in the disease remain elusive. Neuronal Pentraxin 2 (NPTX2), a sensitive marker for synaptic activity and AD progression, is an immediate early gene expressed by pyramidal neurons that functions at excitatory synapses on Parvalbumin interneurons (PV-IN) to cluster AMPA receptors and strengthen circuit inhibition. NPTX2 is later shed from some synapses into the cerebrospinal fluid (CSF), where reduced NPTX2 levels inversely correlate with hippocampal volume and cognitive performance in individuals with AD/MCI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!