Transient inhibition of L929 cell mitosis and locomotion by argon ion laser irradiation.

In Vitro Cell Dev Biol Anim

Department of Pathology and Laboratory Medicine, Staten Island University Hospital, New York 10305, USA.

Published: February 1998

Argon ion laser irradiation of L929 cells transiently inhibits both entry into and passage through mitosis without affecting clonogenic survival. Anaphase mitotic figures virtually disappear from irradiated cell monolayers although prophase + metaphase mitotic figures can still be identified. The total number of mitotic figures does not change significantly and time-lapse video recording shows that cells do not enter mitosis following irradiation. This effect is dependent on light dose within the 900-2700 J/cm2 range and persists for 10-48 h depending on the initial light exposure. Inhibition of cell locomotion and subsequent recovery were observed to occur over a similar time course. The possible contribution of these phenomena must be considered whenever biological systems are exposed to argon ion laser irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11626-998-0098-6DOI Listing

Publication Analysis

Top Keywords

argon ion
12
ion laser
12
laser irradiation
12
mitotic figures
12
transient inhibition
4
inhibition l929
4
l929 cell
4
cell mitosis
4
mitosis locomotion
4
locomotion argon
4

Similar Publications

The introduction of intermediate bands by hyperdoping is an efficient way to realize infrared light absorption of silicon. In this Letter, inert element (helium and argon for specific)-doped black silicon is obtained by helium ion-implantation followed by femtosecond pulse laser irradiation in an argon atmosphere based on near-intrinsic silicon substrates. Within the 200 nm of the silicon surface, the concentrations of helium and argon are both above the order of 10 cm.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) offer several advantages over traditional lithium-ion batteries, including a more uniform sodium distribution, lower-cost materials, and safer transportation options. A promising development in SIBs is the use of hard carbons as anode materials due to their low insertion voltage and larger interlayer spacing, which improve sodium-ion insertion. Traditionally, hard carbons are made from costly carbon sources, but recent advancements have focussed on using abundant bio-waste, like coffee grounds.

View Article and Find Full Text PDF

Influencing factors and quantitative prediction of gas content of deep marine shale in Luzhou block.

Sci Rep

January 2025

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China.

The exploration and development of deep marine shale gas has made significant breakthroughs, but factors influencing gas contents of deep marine shale are elusive, and quantitative prediction methods of gas content needs to be refined urgently. In this study, the deep marine shale of Longmaxi Formation in Luzhou area was taken as an example, vitrinite reflectance analysis, kerogen microscopy experiment, TOC content analysis, mineral composition analysis, gas content measurement, isothermal adsorption experiment, physical property analysis and argon ion polishing scanning electron microscopy experiment were carried out to find out factors affecting the gas content of deep marine shale, and a gas content prediction model has been worked out. Conclusions below have been reached: the content of adsorbed gas is mainly affected by Ro, TOC content, porosity, water saturation, clay mineral content, formation temperature and pressure; the content of free gas is mainly controlled by porosity, water saturation, formation temperature and pressure; according to the prediction models, the adsorbed gas content, free gas content and total gas content of each well were quantitatively calculated, and the study area was divided into Class I (with a total gas content ≥ 11 m/t), Class II (with a total gas content between 9 m/t and 11 m/t), and Class III (with a total gas content < 9 m/t) gas-bearing areas.

View Article and Find Full Text PDF

In this work, within the framework of a self-consistent model of arc discharge, a simulation of plasma parameters in a mixture of argon and methane was carried out, taking into account the evaporation of the electrode material in the case of a refractory and non-refractory cathode. It is shown that in the case of a refractory tungsten cathode, almost the same methane conversion rate is observed, leading to similar values in the density of the main methane conversion products (C, C, H) at different values of the discharge current density. However, with an increase in the current density, the evaporation rate of copper atoms from the anode increases, and a jump in the - characteristic is observed, caused by a change in the plasma-forming ion.

View Article and Find Full Text PDF

Spectroscopy and Bonding Analysis of ArBO ( = 1-3) Cations That Possess Argon-Boron Multiple Bonds.

J Am Chem Soc

January 2025

School of Chemistry and Molecular Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.

ArBO ( = 1-3) complexes have been prepared and subjected to spectroscopic characterization in the gas phase. Mass-selected infrared photodissociation spectroscopy, in combination with theoretical calculations, reveals the coexistence of two nearly isoenergetic structural isomers in ArBO. One isomer entails two equivalent Ar atoms chemically bound to BO, while the other features an ArBO core ion accompanied by a weakly tagging argon atom.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!