A large set of monoclonal antibodies (MAbs) directed against the fusion glycoprotein complex F1F2 of bovine respiratory syncytial virus (BRSV) and several polyclonal sera from infected or vaccinated animals were tested in Pepscan to locate linear epitopes on the F-protein. The polyclonal sera mapped to antigenic sites that correspond exactly to known antigenic sites on the F protein of human RSV. Only the neutralizing MAb 3 could be mapped with Pepscan. MAb 3 reacted with three successive overlapping linear peptides that shared the amino acid sequence 173STNKAVVSLS182. The sequence of this novel neutralization site is conserved in all known BRSV- and human RSV-strains and is located on the N-terminus of F1, adjacent to the hydrophobic, putative fusion-related region. This region is probably part of a central coiled-coil stem that is structurally conserved in paramyxovirus fusion and orthomyxovirus hemagglutinin glycoproteins. This linear conserved epitope may be a potential candidate for a peptide-based vaccine which can induce neutralizing antibodies against all groups and subgroups of RSV. Furthermore, the proposed structural features of the neutralization site may aid in the design of a peptide-based vaccine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s007050050288DOI Listing

Publication Analysis

Top Keywords

neutralization site
12
respiratory syncytial
8
syncytial virus
8
polyclonal sera
8
antigenic sites
8
peptide-based vaccine
8
identification conserved
4
conserved neutralization
4
site heptad
4
heptad repeat
4

Similar Publications

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus.

View Article and Find Full Text PDF

Background: The emergence of novel SARS-CoV-2 variants challenges immunity, particularly among immunocompromised kidney transplant recipients (KTRs). To address this, vaccines have been adjusted to circulating variants. Despite intensive vaccination efforts, SARS-CoV-2 infections surged among KTRs during the Omicron wave, enabling a direct comparison of variant-specific immunity following-vaccination against Omicron BA.

View Article and Find Full Text PDF

Microneedle-delivered adeno-associated virus vaccine amplified anti-viral immunity by improving antigen-presenting cells infection.

J Control Release

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. Electronic address:

Adeno-associated viruses (AAV) have significant potential as vaccine carriers due to their excellent biosafety and efficient antigen gene delivery. However, most AAV vaccines show limited capacity to transduce antigen-presenting cells (APCs) following intramuscular injection which may cause inadequate cellular immune responses and undesired side effects due to transducing other tissues or cells. Herein, we developed a soluble microneedle patch for targeting the AAV vaccines to the epidermal and dermal APCs.

View Article and Find Full Text PDF

Nanobodies or variable antigen-binding domains (VH) derived from heavy chain-only antibodies (HcAb) occurring in the Camelidae family offer certain superior physicochemical characteristics like enhanced stability, solubility, and low immunogenicity compared to conventional antibodies. Their efficient antigen-binding capabilities make them a preferred choice for next-generation small biologics. In the present work, we design an anti-SARS-CoV-2 bi-paratopic nanobody drug conjugate by screening a nanobody database.

View Article and Find Full Text PDF

Although much has been learned about the entry mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many details of the entry mechanisms of seasonal human coronaviruses (HCoVs) remain less well understood. In the present study, we used 293T cell lines stably expressing angiotensin converting enzyme (ACE2), aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2), which support high-level transduction of lentiviral pseudoviruses bearing spike proteins of seasonal HCoVs, HCoV-NL63, -229E, or -HKU1, respectively, to compare spike processing and virus entry pathways among these viruses. Our results showed that the entry of HCoV-NL63, -229E, and -HKU1 pseudoviruses into cells is sensitive to endosomal acidification inhibitors (chloroquine and NHCl), indicating entry via the endocytosis route.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!