Mutants with enhanced spontaneous mutability (hsm) to canavanine resistance were induced by N-methyl-N-nitrosourea in Saccharomyces cerevisiae. One bearing the hsm3-1 mutation was used for this study. This mutation does not increase sensitivity to the lethal action of different mutagens. The hsm3-1 mutation produces a mutator phenotype, enhancing the rates of spontaneous mutation to canavanine resistance and reversions of lys1-1 and his1-7. This mutation increases the rate of intragenic mitotic recombination at the ADE2 gene. The ability of the hsm3 mutant to correct DNA heteroduplex is reduced in comparison with the wild-type strain. All these phenotypes are similar to ones caused by pms1, mlhl and msh2 mutations. In contrast to these mutations, hsm3-1 increases the frequency of ade mutations induced by 6-HAP and UV light. Epistasis analysis of double mutants shows that the PMS1 and HSM3 genes control different mismatch repair systems. The HSM3 gene maps to the right arm of chromosome II, 25 cM distal to the HIS7 gene. Strains that bear a deleted open reading frame YBR272c have the genetic properties of the hsm3 mutant. The HSM3 product shows weak similarity to predicted products of the yeast MSH genes (homologs of the Escherichia coli mutS gene). The HSM3 gene may be a member of the yeast MutS homolog family, but its function in DNA metabolism differs from the functions of other yeast MutS homologs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1460053PMC
http://dx.doi.org/10.1093/genetics/148.3.963DOI Listing

Publication Analysis

Top Keywords

hsm3 gene
12
mismatch repair
8
canavanine resistance
8
hsm3-1 mutation
8
hsm3 mutant
8
yeast muts
8
gene
6
hsm3
6
mutation
5
yeast
4

Similar Publications

In the nuclear compartment of yeast, NuB4 core complex consists of three proteins, Hat1, Hat2, and Hif1, and interacts with a number of other factors. In particular, it was shown that NuB4 complex physically interacts with Hsm3p. Early we demonstrated that the gene participates in the control of replicative and reparative spontaneous mutagenesis, and that mutants increase the frequency of mutations induced by different mutagens.

View Article and Find Full Text PDF

Long-term storage at +4 degrees C and cultivation at +30 degrees C changes the spontaneous mutation rate of the yeast Saccharomyces cerevisiae double mutants rad52hsm3delta and rad52hsm6-1. Combinations of hsm3 and hsm6 mutations with the rad52 mutation lead to a decrease of the spontaneous mutation rate mediated by DNA repair synthesis in multiply replanted strains in comparison with the same strains investigated right after RAD52 gene decay. Combinations of hsm3 and hsm6 mutations with mutations in other genes of the RAD52 epistatic group did not provide a spontaneous mutation rate decrease.

View Article and Find Full Text PDF

It was assumed previously that the mutator phenotype of the hms3 mutant was determined by processes taking place in the D-loop. As a next step, genetic analysis was performed to study the interactions between the hsm3 mutation and mutations of the genes that control the initial steps of the D-loop formation. The mutations of the MMS4 and XRS2 genes, which initiate the double-strand break formation and subsequent repair, were shown to completely block HSM3-dependent UV-induced mutagenesis.

View Article and Find Full Text PDF

In eukaryotes, damage tolerance of matrix DNA is mainly determined by the repair pathway under the control of the RAD6 epistatic group of genes. T this pathway is also a main source of mutations generated by mutagenic factors. The results of our recent studies show that gene HSM3 participating in the control of adaptive mutagenesis increases the frequency of mutations induced by different mutagens.

View Article and Find Full Text PDF

The 26S proteasome is a 2.5 MDa macromolecular machine responsible for targeted protein degradation. Recently, four chaperones were identified that promote the assembly of the 19S regulatory particle (RP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!