Download full-text PDF

Source

Publication Analysis

Top Keywords

weightlessness mineral
4
mineral metabolism
4
metabolism metabolic
4
metabolic studies
4
studies skylab
4
skylab orbital
4
orbital space
4
space flights
4
weightlessness
1
metabolism
1

Similar Publications

This study investigates the effects of microgravity on the differentiation and mineralization of IDG-SW3 osteocyte-like cells to understand the response of bone cells to microgravity and develop strategies to mitigate bone loss in astronauts. IDG-SW3 cells were cultured in collagen-coated dishes and subjected to a 3D clinostat to simulate microgravity 14 days after initiating differentiation. The static group remained under normal gravity.

View Article and Find Full Text PDF

The Case for Bisphosphonate Use in Astronauts Flying Long-Duration Missions.

Cells

August 2024

Human Health & Performance Directorate, NASA Johnson Space Center, 2101 NASA Parkway SK3, Houston, TX 77058, USA.

Changes in the structure of bone can occur in space as an adaptive response to microgravity and on Earth due to the adaptive effects to exercise, to the aging of bone cells, or to prolonged disuse. Knowledge of cell-mediated bone remodeling on Earth informs our understanding of bone tissue changes in space and whether these skeletal changes might increase the risk for fractures or premature osteoporosis in astronauts. Comparisons of skeletal health between astronauts and aging humans, however, may be both informative and misleading.

View Article and Find Full Text PDF
Article Synopsis
  • Previous experiments observed the effects of microgravity on fetal mouse long bones, and this study aimed to confirm those findings while examining the impact of daily 1×g exposure during microgravity on bone growth and mineralization.
  • Two separate experiments were carried out on American and Russian space missions, using 17-day-old fetal mouse bones cultured for four days.
  • Results revealed that microgravity reduced proteoglycan content and slowed mineralized bone growth, but daily exposure to 1×g for at least 6 hours helped mitigate these effects, suggesting artificial gravity could serve as an effective countermeasure.
View Article and Find Full Text PDF

Astronauts are exposed to severely stressful physiological conditions due to microgravity and increased space radiation. Space environment affects every organ and cell in the body and the significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton (spaceflight osteopenia). Amorphous Calcium Carbonate (ACC) emerges as a promising candidate for prevention of these effects, owing to its unique physicochemical properties and its potential to address the intricately linked nature of bone-muscle crosstalk.

View Article and Find Full Text PDF

Effect of Spaceflight and Microgravity on the Musculoskeletal System: A Review.

J Am Acad Orthop Surg

June 2024

From the Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (Lee Satcher), and the Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX (Fiedler, Ghali, and Dirschl).

With National Aeronautics and Space Administration's plans for longer distance, longer duration spaceflights such as missions to Mars and the surge in popularity of space tourism, the need to better understand the effects of spaceflight on the musculoskeletal system has never been more present. However, there is a paucity of information on how spaceflight affects orthopaedic health. This review surveys existing literature and discusses the effect of spaceflight on each aspect of the musculoskeletal system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!