Functional properties of the type-3 InsP3 receptor in 16HBE14o- bronchial mucosal cells.

J Biol Chem

Laboratorium voor Fysiologie, K. U. Leuven Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.

Published: April 1998

The type-3 inositol 1,4,5-trisphosphate (InsP3) receptor is the major isoform expressed in 16HBE14o- cells from bronchial mucosa, representing 93% at the mRNA level as determined by ratio reverse transcription-polymerase chain reaction and about 81% at the protein level as determined with isoform-specific antibodies (Sienaert, I., Huyghe, S., Parys, J. B., Malfait, M., Kunzelmann, K., De Smedt, H., Verleden, G. M., and Missiaen, L., Pflügers Arch. Eur. Y. Physiol., in press). The present 45Ca2+ efflux experiments indicate that these InsP3 receptors were 3 times less sensitive to InsP3 and 11 times less sensitive to ATP than those in A7r5 cells, where the type-1 InsP3 receptor is the main isoform. ATP did not increase the cooperativity of the InsP3-induced Ca2+ release in 16HBE14o- cells, in contrast to its effect in A7r5 cells. The sulfhydryl reagent thimerosal also did not stimulate InsP3-induced Ca2+ release in 16HBE14o- cells, again in contrast to its effect in A7r5 cells. Adenophostin A was more potent than InsP3 in stimulating the release in both cell types. The biphasic activation of the InsP3 receptor by cytosolic Ca2+ occurred in both cell types. We conclude that Ca2+ release mediated by the type-3 InsP3 receptor mainly differs from that mediated by the type-1 InsP3 receptor by its lack of stimulation by sulfhydryl oxidation and its lower ATP and InsP3 sensitivity. The predominant expression of the type-3 InsP3 receptor in the bronchial mucosa may be part of a mechanism coping with oxidative stress in that tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.273.15.8983DOI Listing

Publication Analysis

Top Keywords

insp3 receptor
28
type-3 insp3
12
16hbe14o- cells
12
a7r5 cells
12
ca2+ release
12
insp3
11
bronchial mucosa
8
level determined
8
times sensitive
8
type-1 insp3
8

Similar Publications

Cellular Senescence Genes as Cutting-Edge Signatures for Abdominal Aortic Aneurysm Diagnosis: Potential for Innovative Therapeutic Interventions.

J Cell Mol Med

January 2025

State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.

Abdominal aortic aneurysm (AAA) is the most prevalent dilated arterial aneurysm that poses a significant threat to older adults, but the molecular mechanisms linking senescence to AAA progression remain poorly understood. This study aims to identify cellular senescence-related genes (SRGs) implicated in AAA development and assess their potential as therapeutic targets. Four hundred and twenty-nine differentially expressed genes (DEGs) were identified from the GSE57691 training set, and 867 SRGs were obtained.

View Article and Find Full Text PDF

Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).

View Article and Find Full Text PDF

Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J).

View Article and Find Full Text PDF

Astrocytes from different brain regions respond with Ca elevations to the catecholamine norepinephrine (NE). However, whether this noradrenergic-mediated signaling is present in astrocytes from the ventral tegmental area (VTA), a dopaminergic circuit receiving noradrenergic inputs, has not yet been investigated. To fill in this gap, we applied a pharmacological approach along with two-photon microscopy and an AAV strategy to express a genetically encoded calcium indicator in VTA astrocytes.

View Article and Find Full Text PDF

This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!