The plasmid encoded LlaI R/M system from Lactococcus lactis ssp. lactis consists of a bidomain methylase, with close evolutionary ties to type IIS methylases, and a trisubunit restriction complex. Both the methylase and restriction subunits are encoded on a polycistronic 6.9 kb operon. In this study, the 5' end of the llal 6.9 kb transcript was determined by primer extension analysis to be 254 bp upstream from the first R/M gene on the operon, llalM. Deletion of this promoter region abolished LlaI restriction in L. lactis. Analysis of the intervening sequence revealed a 72-amino-acid open reading frame, designated llalC, with a conserved ribosome binding site and helix-turn-helix domain. Overexpression of llalC in Escherichia coli with a T7 expression vector produced the predicted protein of 8.2 kDa. Mutation and in trans complementation analyses indicated that C-LlaI positively enhanced LlaI restriction activity in vivo. Northern analysis and transcriptional fusions of the llal promoter to a lacZ reporter gene indicated that C x LlaI did not enhance transcription of the llal operon. Databank searches with the deduced protein sequence for llalC revealed significant homologies to the E. coli Rop regulatory and mRNA stabilizer protein. Investigation of the effect of C x LlaI on enhancement of LlaI restriction in L. lactis revealed that growth at elevated temperatures (40 degrees C) completely abolished any enhancement of restriction activity. These data provide molecular evidence for a mechanism on how the expression of a restriction system in a prokaryote can be drastically reduced during elevated growth temperatures, by a small regulatory protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2958.1998.00748.x | DOI Listing |
Appl Microbiol Biotechnol
March 2016
Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH, 43210, USA.
Clostridium cellulovorans, a cellulolytic bacterium producing butyric and acetic acids as main fermentation products, is a promising host for biofuel production from cellulose. However, the transformation method of C. cellulovorans was not available, hindering its genetic engineering.
View Article and Find Full Text PDFJ Bacteriol
February 2007
Department of Food Science, North Carolina State University, Raleigh, NC 27695, USA.
The conjugative plasmid pTR2030 has been used extensively to confer phage resistance in commercial Lactococcus starter cultures. The plasmid harbors a 16-kb region, flanked by insertion sequence (IS) elements, that encodes the restriction/modification system LlaI and carries an abortive infection gene, abiA. The AbiA system inhibits both prolate and small isometric phages by interfering with the early stages of phage DNA replication.
View Article and Find Full Text PDFMol Genet Genomics
November 2003
Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
The accurate segregation of sister chromatids at the metaphase to anaphase transition in Saccharomyces cerevisiae is regulated by the activity of the anaphase-promoting complex or cyclosome (APC/C). In the event of spindle damage or monopolar spindle attachment, the spindle checkpoint is activated and inhibits APC/C activity towards the anaphase inhibitor Pds1p, resulting in a cell cycle arrest at metaphase. We have identified a novel allele of a gene for an APC/C subunit, cdc16-183, in S.
View Article and Find Full Text PDFMol Microbiol
March 1998
Department of Food Science, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695-7624, USA.
The plasmid encoded LlaI R/M system from Lactococcus lactis ssp. lactis consists of a bidomain methylase, with close evolutionary ties to type IIS methylases, and a trisubunit restriction complex. Both the methylase and restriction subunits are encoded on a polycistronic 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!