Staphylococcus epidermidis phage 48 was used to efficiently transduce plasmid pTV1ts and a chromosomal Tn917 insertion M27 from S. epidermidis 13-1 to biofilm-producing clinical S. epidermidis isolates 1457, 9142, and 8400. The Tn917 insertion leading to the biofilm-negative phenotype of transposon mutant M10 was sequentially transduced to biofilm-producing S. epidermidis 1457 using S. epidermidis phage 48 and then, using the resulting biofilm-negative transductant 1457-M10 as a donor, into several unrelated biofilm-producing clinical S. epidermidis isolates using S. epidermidis phage 71. All resultant transductants displayed a completely biofilm-negative phenotype. In addition, S. epidermidis phage 71 was adapted to S. epidermidis 1457 and 8400, which allowed generalized transduction of transposon insertions in these wild-type strains. As Tn917 predominantly transposed into endogenous plasmids of all three strains used, an efficient system for chromosomal transposon mutagenesis was established by curing of S. epidermidis 1457 of a single endogenous plasmid p1457 by sodium dodecylsulfate treatment. After transduction of the resulting derivative, S. epidermidis 1457c with pTV1ts, insertion of transposon Tn917 to different sites of the chromosome of S. epidermidis 1457c was observed. Biofilm-producing S. epidermidis 1457c x pTV1ts was used to isolate a biofilm-negative transposon mutant (1457c-M3) with a chromosomal insertion apparently different from two previously isolated isogenic biofilm-negative transposon mutants, M10 and M11 (Mack, D., M. Nedelmann, A. Krokotsch, A. Schwarzkopf, J. Heesemann, and R. Laufs: Infect Immun 62 [1994] 3244-3253). S. epidermidis phage 71 was used to prove genetic linkage between transposon insertion and altered phenotype by generalized transduction. In combination with phage transduction, 1457c x pTV1ts will be a useful tool facilitating the study of bacterial determinants of the pathogenicity of S. epidermidis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0934-8840(98)80151-5 | DOI Listing |
Microbiol Spectr
January 2025
Department of Biological Sciences, University of North Texas, Denton, Texas, USA.
Unlabelled: As antibiotic resistance has become a major global threat, the World Health Organization (WHO) has urgently called for alternative strategies for control of bacterial infections. Endolysin, a phage-encoded protein, can degrade bacterial peptidoglycan (PG) and disrupt bacterial growth. According to the WHO, there are only three endolysin products currently in clinical phase development.
View Article and Find Full Text PDFMicrobiol Res
January 2025
CEB - Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal. Electronic address:
Coagulase-negative staphylococci (CoNS) are commensal bacteria of the human skin and mucosal membranes. The incidence of nosocomial infections caused by these species is on the rise, leading to a potential increase in antibiotic tolerance and resistance. Phages are emerging as a promising alternative to combat CoNS infections.
View Article and Find Full Text PDFBMC Microbiol
October 2024
Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
mSystems
October 2024
Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France.
Phage therapy appears to be a promising approach to tackle multidrug-resistant bacteria, including staphylococci. However, most anti-staphylococcal phages have been characterized in , while a limited number of studies investigated phage activity against . We studied the potential of phage training to extend the host range of two types of anti-.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!