Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0041-1345(97)01375-4 | DOI Listing |
Inflamm Res
January 2025
Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Department of Hand and Foot Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China.
Diseases and injuries can cause significant bone loss, leading to increased medical expenses, decreased work efficiency, and a decline in quality of life. Bone tissue engineering (BTE) is gaining attention as an alternative to autologous and allogeneic transplantation due to the limited availability of donors. Biomaterials represent a promising strategy for bone regeneration, and their design should consider the three key processes in bone tissue engineering: osteogenesis, bone conduction, and bone induction.
View Article and Find Full Text PDFJ Clin Med
December 2024
Health, Nutrition & Care, DSM-Firmenich, 4303 Kaiseraugst, Switzerland.
Biotics are increasingly being used in the treatment of irritable bowel syndrome (IBS). This study aimed to assess the efficacy and safety of a mixture of microencapsulated sodium butyrate, probiotics ( DSM 26357, DSM 32418, DSM 32946, DSM 32403, and DSM 32269), and short-chain fructooligosaccharides (scFOSs) in IBS patients. This was a randomized, double-blind, placebo-controlled trial involving 120 adult participants with IBS.
View Article and Find Full Text PDFBiomedicines
November 2024
Federal State Budgetary Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of Russia, 603005 Nizhny Novgorod, Russia.
Background/objectives: This study focuses on the development and evaluation of novel alginate-poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMETAC) microcapsules for encapsulating pancreatic islets to address insulin deficiency in diabetes.
Methods: In previous research, we fabricated and characterized PMETAC microcapsules, evaluating their stability and permeability in vitro. This study further probes the capsules in vivo, focusing on the functional activity of the encapsulated islets post-transplantation, their viability extension, and the assessment of the immunoprotective, antifibrotic properties, and biostability of the capsules.
Sci Rep
October 2024
Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Microfluidics cell encapsulation offers a way to mimic a 3D microenvironment that supports cell growth and proliferation, while also protecting cells from environmental stress. This technique has found extensive applications in tissue engineering and cell therapies. Several studies have demonstrated the advantages of graphene oxide (GO) as an osteogenic inducer; however, the significance of GO on stem cell fate in the single-cell state is still unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!