Transport of H+, K+, Rb+ and Tl+ ions was studied in a wild-type strain of Saccharomyces cerevisiae and in its mutants defective in the high-affinity K+ transport system TRK1 and in the double mutant with an additional deletion in the TRK2 gene. In the absence of glucose K+, Rb+ and Tl+ elicited a more or less stoichiometric exchange outflow of H+, in the mutants K+ moved out of cells even in the presence of 10 mM KCl or KNO3. In the presence of glucose in the wild type, K+, Rb+ and Tl+ brought about a massive outflow of H+ while being transported inward against high concentration gradients. In the trk1 delta mutant the exchange fluxes were reduced by 65-85%, in the double mutant those of K+, Rb+ and Tl+ practically cease but outflow of H+ caused by Tl+ remained at the level of the trk1 delta mutant. It appears that, in addition to the H+ export by the PMA1-coded plasma membrane H(+)-ATPase, at least three different univalent-cation involving activities are present: the high-affinity transport system for K+ (TRK1), another system (possibly TRK2) with different responses to K+ and Rb+, vs. Tl+, and an active system for K+ export. The first two are apparently active exchange systems for K+, Rb+, and Tl+ against H+. The source of energy for these highly active transports (acting against gradients of 1000:1 and 5000:1, respectively) is unclear.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15216549800201382 | DOI Listing |
Biol Trace Elem Res
March 2025
Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China.
Prospective studies examining early maternal exposure to trace metal (TM) mixtures and their effects on offspring remain limited. We analyzed data regarding maternal plasma trace metal concentrations and bone mineral density (BMD) for 220 children aged 3-6 years from the Guangxi Zhuang Birth Cohort. Inductively coupled plasma-mass spectrometry was used to measure 22 trace metal concentrations-Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Sb, Cs, Ba, W, Tl, Pb, and U-in maternal plasma samples collected before 13 weeks of gestation.
View Article and Find Full Text PDFLancet Infect Dis
February 2025
Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
Candida species are the predominant cause of fungal infections in patients treated in hospital, contributing substantially to morbidity and mortality. Candidaemia and other forms of invasive candidiasis primarily affect patients who are immunocompromised or critically ill. In contrast, mucocutaneous forms of candidiasis, such as oral thrush and vulvovaginal candidiasis, can occur in otherwise healthy individuals.
View Article and Find Full Text PDFFoods
January 2025
LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
A comparative elemental analysis of espresso coffee from Poland and Portugal was carried out. Using an ICP-MS analytical procedure, samples collected from public cafes in Poland and Portugal (n = 60 and n = 44, respectively) were studied for their macromineral and trace element content. To evaluate the contribution of water to the final composition of the beverage, paired samples (i.
View Article and Find Full Text PDFNat Commun
February 2025
Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK.
Pancreatic ductal adenocarcinoma has a dismal prognosis. A comprehensive analysis of single-cell multi-omic data from matched tumour-infiltrated CD45+ cells and peripheral blood in 12 patients, and two published datasets, reveals a complex immune infiltrate. Patients have either a myeloid-enriched or adaptive-enriched tumour microenvironment.
View Article and Find Full Text PDFRadiology
January 2025
From the Department of Radiology, University of Washington, UW Medical Center-Montlake, Seattle, Wash (D.M.); Department of Radiology, OncoRad/Tumor Imaging Metrics Core (TIMC), University of Washington, Seattle, Wash (D.M.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (M.v.A.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (M.H.); Department of Radiology, Mayo Clinic, Rochester, Minn (T.L., E.E.W.); Departments of Cardiology and Radiology, Royal Brompton Hospital, London, United Kingdom (E.D.N.); School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom (E.D.N.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (B.D.A.); Department of Radiology, University of Cagliari, Cagliari, Italy (L.S.); Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 Postbus 30 001, 9700 RB Groningen, the Netherlands (R.V.); Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.H.).
Artificial intelligence (AI) offers promising solutions for many steps of the cardiac imaging workflow, from patient and test selection through image acquisition, reconstruction, and interpretation, extending to prognostication and reporting. Despite the development of many cardiac imaging AI algorithms, AI tools are at various stages of development and face challenges for clinical implementation. This scientific statement, endorsed by several societies in the field, provides an overview of the current landscape and challenges of AI applications in cardiac CT and MRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!