AI Article Synopsis

Article Abstract

Physiological and pathological Ca2+ loads are thought to be taken up by mitochondria via a process dependent on aerobic metabolism. We sought to determine whether human diploid fibroblasts from a patient with an inherited defect in pyruvate dehydrogenase (PDH) exhibit a decreased ability to sequester cytosolic Ca2+ into mitochondria. Mobilization of Ca2+ stores with bradykinin (BK) increased the cytosolic Ca2+ concentration ([Ca2+]c) to comparable levels in control and PDH-deficient fibroblasts. In normal fibroblasts transfected with plasmid DNA encoding mitochondrion-targeted apoaequorin, BK elicited an increase in Ca2(+)-dependent aequorin luminescence corresponding to an increase in the mitochondrial Ca2+ concentration ([Ca2+]mt) of 2.0 +/- 0.2 microM. The mitochondrial uncoupling agent carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone blocked the BK-induced [Ca2+]mt increase, although it did not affect the [Ca2+]c transient. Basal [Ca2+]c and [Ca2+]mt in control and PDH-deficient cells were similar. However, confocal imaging of the potential-sensitive dye JC-1 indicated that the percentage of highly polarized mitochondria was reduced from 30 +/- 1% in normal cells to 19 +/- 2% in the PDH-deficient fibroblasts. BK-elicited [Ca2+]mt transients in PDH-deficient cells were reduced to 4% of control, indicating that PDH-deficient mitochondria have a decreased ability to take up cytosolic Ca2+. Thus cells with compromised aerobic metabolism have a reduced capacity to sequester Ca2+.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.1998.274.3.C615DOI Listing

Publication Analysis

Top Keywords

cytosolic ca2+
12
human diploid
8
diploid fibroblasts
8
aerobic metabolism
8
decreased ability
8
ca2+ concentration
8
control pdh-deficient
8
pdh-deficient fibroblasts
8
pdh-deficient cells
8
ca2+
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!