In cardiac myocytes the stimulation of p38 mitogen-activated protein kinase activates a hypertrophic growth program and the induction of the cardiac-specific genes associated with this program. This study focused on determining whether these novel growth-promoting effects are accompanied by the p38-mediated inhibition of apoptosis, and if so, what signaling pathways might be responsible. Primary neonatal rat ventricular myocytes were driven into apoptosis by treatments known to induce apoptosis in other cell types, e.g. incubation with anisomycin or overexpression constitutively active MEKK-1 (MEKK-1COOH), a protein that strongly activates extracellular signal-regulated kinase and N-terminal c-Jun kinase, but not p38. Overexpression of constitutively active MKK6, MKK6 (Glu), which selectively activates p38 in cardiac myocytes, protected cells from either anisomycin- or MEKK-1COOH-induced apoptosis. This protection was blocked by SB 203580, a selective p38 inhibitor. MKK6 (Glu) also activated transcription mediated by NF-kappaB, a factor which protects other cell types from apoptosis. The activation of NF-kappaB and the protection from apoptosis mediated by MKK6 (Glu) were both blocked by SB 203580. Interestingly, overexpression of a mutant form of I-kappaBalpha, which inhibits nuclear translocation of NF-kappaB, completely blocked MKK6 (Glu)-activated NF-kappaB but had little effect on MKK6s anti-apoptotic effects. These findings suggest that, in part, the overexpression of MKK6 (Glu) may foster growth and survival of cardiac myocytes by protecting them from apoptosis in a p38-dependent manner. Additionally, while NF-kappaB is activated in myocardial cells by p38, this does not appear to be the major mechanism by which MKK6 (Glu) exerts its anti-apoptotic effects in this cell type, suggesting a novel pathway for p38-mediated protection from apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.273.14.8232DOI Listing

Publication Analysis

Top Keywords

mkk6 glu
20
cardiac myocytes
12
apoptosis
9
mkk6
8
p38 mitogen-activated
8
mitogen-activated protein
8
cell types
8
overexpression constitutively
8
constitutively active
8
blocked 203580
8

Similar Publications

The dermal fibroblast is a crucial executor involved in wound healing, and lipopolysaccharide is a key factor in initiating the migration and proliferation of the dermal fibroblasts, followed by wound healing. However, the underlying molecular mechanism is still unknown. In this study, we demonstrated that stathmin increased concomitantly with p38/MAPK pathway activation by lipopolysaccharide stimulation of the human dermal fibroblast (HDF), which induced microtubule (MT) depolymerization followed by increased HDF migration and proliferation.

View Article and Find Full Text PDF

ADAM17 Mediates Hypoxia-Induced Keratinocyte Migration via the p38/MAPK Pathway.

Biomed Res Int

January 2022

Department of Plastic and Aesthetic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.

Although hypoxia has been shown to promote keratinocyte migration and reepithelialization, the underlying molecular mechanisms remain largely unknown. ADAM17, a member of the metalloproteinase superfamily, has been implicated in a variety of cellular behaviors such as proliferation, adhesion, and migration. ADAM17 is known to promote cancer cell migration under hypoxia, and whether or how ADAM17 plays a role in hypoxia-induced keratinocyte migration has not been identified.

View Article and Find Full Text PDF

Wound healing is delayed frequently in patients with diabetes. Proper keratinocyte migration is an essential step during re-epithelialization. Impaired keratinocyte migration is a critical underlying factor responsible for the deficiency of diabetic wound healing, which is mainly attributed to the hyperglycemic state.

View Article and Find Full Text PDF

Mitogen-activated protein kinase kinase 6 is involved in the immune response to bacterial di-/tripeptide challenge in grass carp Ctenopharyngodon idella.

Fish Shellfish Immunol

January 2019

Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China. Electronic address:

Mitogen-activated protein kinase kinase 6 (MKK6) is an essential component of the p38MAPK signaling pathway, which is involved in the modulation of inflammation, cell apoptosis and survival responses in mammals. However, the function of MKK6s in teleosts is still unclear. In this study, a fish MKK6 homolog (CiMKK6) was first identified from the grass carp (Ctenopharyngodon idella), a freshwater fish.

View Article and Find Full Text PDF

Excessive activation of inflammation and the accompanying lung vascular endothelial barrier disruption are primary pathogenic features of acute lung injury (ALI). Microtubule-associated protein 4 (MAP4), a tubulin assembly-promoting protein, is important for maintaining the microtubule (MT) cytoskeleton and cell-cell junctional structures. However, both the involvement and exact mechanism of MAP4 in the development of endothelial barrier disruption in ALI remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!