CD8 is a T cell surface glycoprotein that participates in recognition of peptide/MHC class I molecules by binding to their alpha 3 domains. In addition, the cytoplasmic domain of CD8 associates with the intracellular tyrosine kinase p56(lck) (lck) promoting recruitment of lck to the TCR signaling complex. Recent data have suggested also that CD8 may interact with the TCR to promote energetically favorable conformations which increase its ligand binding. We have used the techniques of co-capping and confocal microscopy to ask whether we can detect an association between CD8 and the TCR independently of their binding to MHC class I molecules. We show that capping CD8 heterodimers with antibodies to the CD8 beta polypeptide is significantly more efficient than antibodies to the CD8 alpha polypeptide at inducing co-localization of TCR molecules with CD8, suggesting that there may be preferred conformations of CD8 which stabilize interactions with the TCR. In addition, we show by microscopy that intracellular lck redistributes very efficiently to the area of a CD8 cap, suggesting that there is a stronger association between lck and CD8 than has been proposed from immunoprecipitation analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1521-4141(199802)28:02<745::AID-IMMU745>3.0.CO;2-6DOI Listing

Publication Analysis

Top Keywords

cd8
13
capping cd8
8
cd8 beta
8
class molecules
8
antibodies cd8
8
tcr
5
co-capping studies
4
studies reveal
4
reveal cd8/tcr
4
cd8/tcr interactions
4

Similar Publications

Antidrug antibodies (ADAs) against biologics present a major challenge for sustained biotherapy, including enzyme replacement therapies and adeno-associated virus (AAV) gene therapies. These antibodies arise from undesirable immune responses, leading to altered pharmacokinetics, reduced efficacy, and adverse reactions. In this study, we introduced a rationally designed lipid-rapamycin (Rapa)-based nanovaccine to restore immune tolerance to biologics and overcome drug resistance.

View Article and Find Full Text PDF

Background: Dynamins are defined as a group of molecules with GTPase activity that play a role in the formation of endocytic vesicles and Golgi apparatus. Among them, DNM3 has gained recognition in oncology for its tumor suppressor role. Based on this, the aim of this study is to investigate the effects of the DNM3 gene in patients diagnosed with pancreatic cancer using bioinformatics databases.

View Article and Find Full Text PDF

CD8+ T cells are critical for immune protection against severe COVID-19 during acute infection with SARS-CoV-2. However, the induction of antiviral CD8+ T cell responses varies substantially among infected people, and a better understanding of the mechanisms that underlie such immune heterogeneity is required for pandemic preparedness and risk stratification. In this study, we analyzed SARS-CoV-2-specific CD4+ and CD8+ T cell responses in relation to age, clinical status, and inflammation among patients infected primarily during the initial wave of the pandemic in France or Japan.

View Article and Find Full Text PDF

About one out of two diabetic patients develop diabetic neuropathy (DN), of these 20% experience neuropathic pain (NP) leading to individual, social, and health-economic burden. Risk factors for NP are largely unknown; however, premature aging was recently associated with several chronic pain disorders. DNA methylation-based biological age (DNAm) is associated with disease risk, morbidity, and mortality in different clinical settings.

View Article and Find Full Text PDF

Reduced autoimmunity associated with deletion of host CD73.

Immunohorizons

January 2025

Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.

CD73 is ubiquitously expressed and regulates critical functions across multiple organ systems. The sequential actions of CD39 and CD73 accomplish the conversion of adenosine triphosphate to adenosine and shift the adenosine triphosphate-driven proinflammatory immune cell milieu toward an anti-inflammatory state. This immunological switch is a major mechanism by which regulatory T (Treg) cells control inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!