Infection with Leishmania, an obligate intracellular parasite of mononuclear phagocytes, stimulates the production of IFN-gamma from NK cells, via a pathway which is dependent upon IL-12 and IL-2. IL-12 is also essential for the development of host protective T cell responses to this parasite. However, previous in vitro studies have indicated that macrophages fail to make IL-12 following infection with Leishmania, and that subsequent to infection, macrophages become refractory to normal IL-12-inducing stimuli. We have used an in situ approach to attempt to resolve this apparent paradox, and by immunostaining for IL-12 p40 protein, we now demonstrate for the first time, that dendritic cells (DC) are the critical source of early IL-12 production following Leishmania infection. IL-12 production by DC is transient, peaking at 1 day post infection and returning to the levels seen in uninfected mice by day 3. Although resident tissue macrophages fail to produce IL-12 after Leishmania infection, these cells are not totally refractory to cytokine inducing stimuli, as TNF-alpha production is induced by day 3 post infection. Not only do these data satisfactorily explain the differences between in vivo and in vitro data by identifying the cellular source of IL-12, but they also suggest a novel model for NK cell activation; namely that in response to pathogens which fail to trigger IL-12 production by macrophages, DC-T cell clusters provide the microenvironment for initial NK cell activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1521-4141(199802)28:02<687::AID-IMMU687>3.0.CO;2-N | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!