The nucleosome is the ubiquitous and fundamental DNA-protein complex of the eukaryotic chromosome, participating in the packaging of DNA and in the regulation of gene expression. Biophysical studies have implicated changes in nucleosome structure from chromatin that is quiescent to active in transcription. Since DNA within the nucleosome contains a high concentration of phosphorus whereas histone proteins do not, the nucleosome structure is amenable to microanalytical electron energy loss mapping of phosphorus to delineate the DNA within the protein-nucleic acid particle. Nucleosomes associated with transcriptionally active genes were separated from nucleosomes associated with quiescent genes using mercury-affinity chromatography. The three-dimensional image reconstruction methods for the total nucleosome structure and for the 3D DNA-phosphorus distribution combined quaternion-assisted angular reconstitution of sets of single particles at random orientations and electron spectroscopic imaging. The structure of the active nucleosome has the conformation of an open clam-shell, C- or U-shaped in one view, elongated in another, and exhibits a protein asymmetry. A three-dimensional phosphorus map reveals a conformational change in nucleosomal DNA compared to DNA in the canonical nucleosome structure. It indicates an altered superhelicity and is consistent with unfolding of the particle. The results address conformational changes of the nucleosome and provide a direct structural linkage to biochemical and physiological changes which parallel gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0968-4328(97)00050-4DOI Listing

Publication Analysis

Top Keywords

nucleosome structure
20
nucleosome
9
gene expression
8
changes nucleosome
8
nucleosomes associated
8
structure
6
dna
5
high resolution
4
resolution microanalysis
4
microanalysis three-dimensional
4

Similar Publications

The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.

View Article and Find Full Text PDF

Chromatin remodeling enzymes play a crucial role in the organization of chromatin, enabling both stability and plasticity of genome regulation. These enzymes use a Snf2-type ATPase motor to move nucleosomes, but how they translocate DNA around the histone octamer is unclear. Here we use cryo-EM to visualize the continuous motion of nucleosomal DNA induced by human chromatin remodeler SNF2H, an ISWI family member.

View Article and Find Full Text PDF

Unlabelled: The centromere is a part of the chromosome that is essential for the even segregation of duplicated chromosomes during cell division. It is epigenetically defined by the presence of the histone H3 variant CENP-A. CENP-A associates specifically with a group of 16 proteins that form the centromere-associated network of proteins (CCAN).

View Article and Find Full Text PDF

In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes. H1 binds to the linker DNA of nucleosome to form the chromatosome, the next structural unit of chromatin. Structural features on individual chromatosomes contribute to chromatin structure, but not fully characterized.

View Article and Find Full Text PDF

In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!