Membrane fragments from Heliobacillus mobilis were characterized using time resolved optical spectroscopy and photovoltage measurements in order to detect a possible participation of menaquinone (MQ), functioning analogous to the phylloquinone A1 in photosystem I, as intermediate in electron transfer from the primary acceptor A0 to the iron-sulfur cluster FX in the photosynthetic reaction center. The spectroscopic data obtained exclude that electron transfer from a semiquinone anion MQ- to FX occurred in the time window from 2 ns to 4 micros, where it would be expected in analogy to photosystem I. In the case of a prereduction of FX, only the primary pair P798+A0- was formed. The photovoltage data yielded a single kinetic phase with a time constant of 700 ps for the transmembrane electron transfer beyond A0; the relative amplitude of this phase suggests that it reflects electron transfer from A0- to FX.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0005-2728(98)00010-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!