We have previously shown that intravenously injected peripheral blood (PB) or bone marrow (BM) cells from newly diagnosed chronic myeloid leukemia (CML) patients can engraft the BM of sublethally irradiated severe combined immunodeficient (SCID) mice. We now report engraftment results for chronic phase CML cells in nonobese diabetic (NOD)/SCID recipients which show the superiority of this latter model. Transplantation of NOD/SCID mice with 7 to 10 x 10(7) patient PB or BM cells resulted in the continuing presence of human cells in the BM of the mice for up to 7 months, and primitive human CD34+ cells, including those detectable as colony-forming cells (CFC), as long-term culture-initiating cells, or by their coexpression of Thy-1, were found in a higher proportion of the NOD/SCID recipients analyzed, and at higher levels than were seen previously in SCID recipients. The human CFC and total human cells present in the BM of the NOD/SCID mice transplanted with CML cells also contained higher proportions of leukemic cells than were obtained in the SCID model, and NOD/SCID mice could be repopulated with transplants of enriched CD34+ cells from patients with CML. These results suggest that the NOD/SCID mouse may allow greater engraftment and amplification of both normal and leukemic (Ph+) cells sufficient for the quantitation and characterization of the normal and leukemic stem cells present in patients with CML. In addition, this model should make practical the investigation of mechanisms underlying progression of the disease and the development of more effective in vivo therapies.
Download full-text PDF |
Source |
---|
Brain Behav
January 2025
Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan.
Introduction: Acute encephalopathy (AE) in childhood due to a viral infection causes convulsions and altered consciousness, leading to severe sequelae and death. Among the four types of AE, cytokine storm-induced AE is the most severe and causes serious damage to the brain. Moreover, a fundamental treatment for AE has not been established yet.
View Article and Find Full Text PDFJ Gastrointest Oncol
December 2024
Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
Background: Orthotopic models offer a more accurate representation of colorectal cancer (CRC) compared to subcutaneous models. Despite promising results from the reported intra-rectal models, establishing a standardized method for CRC research remains challenging due to model variability, hindering comprehensive studies on CRC pathogenesis and treatment modalities, such as brachytherapy. This study aimed to establish a standardized workflow for an orthotopic intra-rectal animal model to induce the growth of colorectal adenocarcinoma in male and female mice.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.
Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.
Type 1 diabetes (T1D) is caused by the immune-mediated loss of pancreatic β-cells. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor which is crucial for cellular responses to low oxygen. Here, we investigate the role of β-cell HIF-1α in β-cell death and diabetes after exposure to multiple low-dose streptozotocin (MLDS).
View Article and Find Full Text PDFBr J Haematol
January 2025
Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Chimeric antigen receptor T-cell (CAR-T) therapy has shown transformative potential in treating malignant tumours, with increasing global approval of CAR-T products. However, high-production costs and risks associated with viral vector-based CAR-T cells-such as insertional mutagenesis and secondary tumour formation-remain challenges. Our study introduces an innovative CAR-T engineering approach using mRNA delivered via lipid nanoparticles (LNPs), aiming to reduce costs and enhance safety while maintaining strong anti-tumour efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!