Two new RNase inhibitors, SaI14 (Mr, approximately 14,000) and SaI20 (Mr, approximately 20,000), were isolated and purified from a Streptomyces aureofaciens strain. The gene sai14, coding for SaI14 protein, was cloned and expressed in Escherichia coli. The alignment of the deduced amino acid sequence of SaI14 with that of barstar, the RNase inhibitor from Bacillus amyloliquefaciens, showed significant similarity between them, especially in the region which contains most of the residues involved in barnase-barstar complex formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC107063PMC
http://dx.doi.org/10.1128/JB.180.6.1582-1585.1998DOI Listing

Publication Analysis

Top Keywords

rnase inhibitors
8
inhibitors sai14
8
escherichia coli
8
coding sai14
8
sai14
6
isolation purification
4
purification novel
4
novel streptomycete
4
streptomycete rnase
4
sai14 sai20
4

Similar Publications

Lysosomal stress due to the accumulation of nucleic acids (NAs) activates endosomal TLRs in macrophages. Here, we show that lysosomal RNA stress, caused by the lack of RNase T2, induces macrophage accumulation in multiple organs such as the spleen and liver through TLR13 activation by microbiota-derived ribosomal RNAs. TLR13 triggered emergency myelopoiesis, increasing the number of myeloid progenitors in the bone marrow and spleen.

View Article and Find Full Text PDF

ClsC protein encoded by a stress-responsive operon in Escherichia coli functions as a trans-acting activator of RNase III.

Int J Biol Macromol

January 2025

Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

RNase III, an endoribonuclease that cleaves double-stranded RNAs (dsRNAs), significantly impacts Escherichia coli (E. coli) adaptation by regulating global RNA gene expression. YmdB from E.

View Article and Find Full Text PDF

Cellular senescence is an essentially irreversible cell cycle arrest associated with upregulated inflammatory responses that contribute to various pathological and physiological processes, including aging, cancer, and cancer prevention. However, the underlying mechanisms are not fully understood. Here, we show that the downregulation of CNOT3, a subunit of the CCR4-NOT complex that deadenylates mRNA poly(A) tails, promotes cellular senescence in subpopulation of A549 human non-small cell lung cancer cells.

View Article and Find Full Text PDF

A High-Throughput Screening Pipeline to Identify Methyltransferase and Exonuclease Inhibitors of SARS-CoV-2 NSP14.

Biochemistry

January 2025

National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States.

SARS-CoV-2 infections led to a worldwide pandemic in 2020. As of 2024, therapeutics against SARS-CoV-2 have continued to be desirable. NSP14 is a dual-function methyltransferase (MTase) and exonuclease (ExoN) with key roles in SARS-CoV-2 genome propagation and host immune system evasion.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are an emerging strategy in cancer therapy, enhancing precision and efficacy by linking targeted antibodies to potent cytotoxic agents. This study introduces a novel ADC that combines ribonuclease A (RNase A) with cetuximab (Cet), an anti-EGFR monoclonal antibody, through a polyethylene glycol (PEG) linker (RN-PEG-Cet), aimed to induce apoptosis in KRAS mutant colorectal cancer (CRC) via a ROS-mediated pathway. RN-PEG-Cet was successfully synthesized and characterized for its physicochemical properties, retaining full enzymatic activity in RNA degradation and high binding affinity to EGFR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!