Fluorescence in situ hybridization (FISH) has become a powerful tool in chromosome analysis. This report describes the systematic optimization of the Fast-FISH technique for centromere labeling of human metaphase chromosomes for radiobiological dosimetry purposes. For the present study, the hybridization conditions and the efficiency of two commercially available alpha-satellite DNA probes were compared ("human chromosome 1 specific", Oncor, Gaithersburg, MD, vs. "all-human chromosomes specific", Boehringer-Mannheim, Germany). These probes were hybridized to human lymphocyte metaphase plates by using a hybridization buffer without formamide and without any other equivalent denaturing chemical agents. The results indicate the suitability of the method for automated image analysis on the basis of thresholding. The optimal conditions concerning hybridization time and temperature were determined by a systematic quantitative evaluation of the fluorescent labeling sites after the hybridization procedures. Under defined "low stringency" conditions, we found that the "human chromosome 1 specific" DNA probe labeled not only the centromere of the human chromosome 1 but also the other human centromeres in the same way as the "all-human chromosome specific" DNA probe. The optimized conditions to complete all centromere labeling were applied to the detection of dicentric chromosomes on irradiated human lymphocyte samples (gamma-rays of 60Co source, 0.5 Gy/min, for doses of 1, 3, and 4 Gy). The yield of dicentrics was determined after Fast-FISH and compared with results obtained after Giemsa staining. These results are very compatible and indicate that, because of its simplicity, this optimized Fast-FISH procedure would be useful for fast screening purposes in biological dosimetry after accidental overexposure.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1097-0320(19980301)31:3<153::aid-cyto2>3.0.co;2-mDOI Listing

Publication Analysis

Top Keywords

chromosome specific"
12
fast-fish technique
8
labeling human
8
human centromeres
8
centromere labeling
8
"human chromosome
8
human lymphocyte
8
specific" dna
8
dna probe
8
human
6

Similar Publications

Identification of chromosomal abnormalities is an important issue in animal breeding and veterinary medicine. Routine cytogenetic diagnosis of domestic animals began in the 1960s with the aim of identifying carriers of centric fusion between chromosome 1 and 29 in cattle. In the 1970s, chromosome banding techniques were introduced, and in the 1980s, the first cytogenomic techniques, based on the development of locus- and chromosome-specific probes, were used.

View Article and Find Full Text PDF

Ceftriaxone-resistant Enterobacterales remain a public health threat; contemporary data investigating their molecular epidemiology are limited. Five hundred consecutive ceftriaxone-resistant (MIC ≥ 4 µg/mL) Enterobacterales bloodstream isolates were collected between 2018 and 2022 from three Maryland hospitals. Broth microdilution confirmed antibiotic susceptibilities.

View Article and Find Full Text PDF

Basil, Ocimum basilicum L., is a widely cultivated aromatic herb, prized for its culinary and medicinal uses, predominantly owing to its unique aroma, primarily determined by eugenol for Genovese cultivars or methyl chavicol for Thai cultivars. To date, a comprehensive basil reference genome has been lacking, with only a fragmented draft available.

View Article and Find Full Text PDF

Summary: Short stature is a common complaint among pediatric visits and the differential diagnosis is extensive. Although some variations in growth are normal, deviation from normal growth is often the first symptom of chronic disease in children. This is true for hormone abnormalities including growth hormone deficiency, hypothyroidism and glucocorticoid excess.

View Article and Find Full Text PDF

Many transcription factors (TFs) have been shown to bind to super-enhancers, forming transcriptional condensates to activate transcription in various cellular systems. However, the genomic and epigenomic determinants of phase-separated transcriptional condensate formation remain poorly understood. Questions regarding which TFs tend to associate with transcriptional condensates and what factors influence their association are largely unanswered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!