Characterization of ARC, a divergent member of the AAA ATPase family from Rhodococcus erythropolis.

J Mol Biol

Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, Martinsried, D-82152, Germany.

Published: March 1998

A gene encoding a AAA ATPase was discovered in the 5' region of the second operon of 20 S proteasome subunits in the nocardioform actinomycete Rhodococcus erythropolis NI86/21. The gene was cloned and expressed in Escherichia coli. The protein, ARC (AAA ATPase forming Ring-shaped Complexes), is a divergent member of the AAA family. The deduced product of the arc gene is 591 residues long (66 kDa). The purified protein possesses a low, N-ethylmaleimide-sensitive ATPase activity and forms rings of six subunits, arranged symmetrically around a central opening or cavity. Two-dimensional crystals grown on lipid monolayers yielded images of the ATPase molecules in "end-on" orientation at 1.9 nm resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.1997.1589DOI Listing

Publication Analysis

Top Keywords

aaa atpase
12
divergent member
8
member aaa
8
rhodococcus erythropolis
8
atpase
5
characterization arc
4
arc divergent
4
aaa
4
atpase family
4
family rhodococcus
4

Similar Publications

ATAD2 is a potential immunotherapy target for patients with small cell lung cancer harboring HLA-A∗0201.

EBioMedicine

January 2025

State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, 100021, China. Electronic address:

Background: Small cell lung cancer (SCLC) represents a highly aggressive neuroendocrine tumour with a dismal prognosis. Currently, the identification of a specific tumour antigen that can facilitate immune-based therapies for SCLC remains elusive.

Methods: We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyse cancer/testis antigens (CTAs) in SCLC cell lines and human tumour specimens.

View Article and Find Full Text PDF

Microtubule-severing enzymes play essential roles in regulating diverse cellular processes, including mitosis and cytokinesis, by modulating microtubule dynamics. In the early branching protozoan parasite , microtubule-severing enzymes are involved in cytokinesis and flagellum length control during different life cycle stages, but none of them have been found to regulate mitosis in any life cycle form. Here, we report the biochemical and functional characterization of the microtubule-severing enzyme spastin in the procyclic form of .

View Article and Find Full Text PDF

Previous data show that the knockdown of the gene in the MDA-MB-231 cell line leads to the downregulation of gene expression. In addition, and genes are co-expressed and dysregulated in some of the same triple negative breast cancer patient samples. We propose that the co-expression of the two genes is attributed to the MYBL1 transcription factor regulation of the gene.

View Article and Find Full Text PDF

ATAD1 Regulates Neuronal Development and Synapse Formation Through Tuning Mitochondrial Function.

Int J Mol Sci

December 2024

Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.

Mitochondrial function is essential for synaptic function. ATAD1, an AAA+ protease involved in mitochondrial quality control, governs fission-fusion dynamics within the organelle. However, the distribution and functional role of ATAD1 in neurons remain poorly understood.

View Article and Find Full Text PDF

VCP controls KCC2 degradation through FAF1 recruitment and accelerates emergence from anesthesia.

Proc Natl Acad Sci U S A

January 2025

Department of Medical Neuroscience, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.

Ubiquitin-proteasomal degradation of K/Cl cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) has been demonstrated to serve as a common mechanism by which the brain emerges from anesthesia and regains consciousness. Ubiquitin-proteasomal degradation of KCC2 during anesthesia is driven by E3 ligase Fbxl4. However, the mechanism by which ubiquitinated KCC2 is targeted to the proteasome has not been elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!