The RNA of Escherichia coli infected with RNA bacteriophage Q beta was isolated and screened for replicable short-chained RNA. In contrast to earlier assumptions we show that (i) short-chained replicable RNA is a very minor part of the RNA synthesized in the infection cycle, and (ii) that the replicable RNA isolated from infected cells is derived from cellular RNA, in particular 23 S rRNA and 10 Sa RNA, and from Q beta RNA itself. None of the many RNA species known from in vitro experiments was found. The RNA species isolated were all inefficient templates. No replicable RNA could be isolated from non-infected cells. Even in cells expressing high amounts of Q beta replicase very few RNA species could be isolated. RNA generated in vitro in template-free synthesis is therefore not derived from RNA species found in vivo, and replicable RNA found in vitro is generated by a mechanism fundamentally different from the one operating in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.1997.1496 | DOI Listing |
JCI Insight
January 2025
Medical Oncology Department, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Netherlands.
Background: Previously, we demonstrated that changes in circulating tumor DNA (ctDNA) are promising biomarkers for early response prediction (ERP) to immune checkpoint inhibitors (ICI) in metastatic urothelial cancer (mUC). In this study, we investigated the value of whole blood immunotranscriptomics for ERP-ICI and integrated both biomarkers into a multimodal model to boost accuracy.
Methods: Blood samples of 93 patients were collected at baseline and after 2-6 weeks of ICI for ctDNA (N=88) and immunotranscriptome (N=79) analyses.
Brief Bioinform
November 2024
School of Artificial Intelligence, Jilin University, Qianjin Street 2699, 130010 Changchun, China.
Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.
View Article and Find Full Text PDFGlycoconj J
January 2025
Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China.
In this study, spatial and single-cell transcriptome techniques were used to investigate the role of beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) in promoting peritoneal metastasis in ovarian cancer epithelial cells. We collected single-cell transcriptomic (GSE130000) and spatial transcriptomic datasets (GSE211956) from the Gene Expression Omnibus and RNA-sequencing data from The Cancer Genome Atlas. The Robust Cell Type Decomposition (RCTD) approach was implemented to integrate spatial and single-cell transcriptomic data.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
December 2024
School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, Jiangsu, China.
Bio-nanopore technology holds great promise in biomacromolecule detection, with its high throughput and low cost positioning it as an ideal detection tool. This technology employs a unique detection mechanism that utilizes nanoscale pores to rapidly and sensitively convert biological molecules interactions into electrical signals, enabling real-time, single-molecule detection with exceptional sensitivity. This review focuses on the latest advancements in this technology across various domains, including DNA and RNA sequencing, protein detection, and small molecule identification.
View Article and Find Full Text PDFSyst Parasitol
January 2025
A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia.
Pulmovermis cyanovitellosus Coil and Kuntz, 1960 is a species of hemiurid trematode that localizes in the lung of sea snakes, an unusual trait for this group of parasites. Recent molecular phylogenetic studies based on 28S rRNA gene sequences have shown that this species is closely related to members of the genus Lecithochirium Lühe, 1901. This finding is unexpected given that Pulmovermis Coil and Kuntz, 1960 and Lecithochirium are currently classified in different subfamilies of Hemiuridae (Pulmoverminae Sandars, 1961 vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.