A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Alterations in human B cell calcium homeostasis by polycyclic aromatic hydrocarbons: possible associations with cytochrome P450 metabolism and increased protein tyrosine phosphorylation. | LitMetric

Previous studies performed in this laboratory have shown that certain benzo(a)pyrene (BaP) metabolites, such as benzo(a)pyrene-7,8-dihydrodiol (BaP-7,8-diol) and benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), were more effective in elevating intracellular Ca2+ in normal human peripheral blood mononuclear cell (HPBMC) T and B cells than was BaP. Additionally, it has been shown that the suppression of human T cell mitogenesis produced by polycyclic aromatic hydrocarbons (PAHs) and certain BaP metabolites is reversed by treatment with alpha-naphthoflavone (ANF), a cytochrome P450 1A and 1B inhibitor. ANF also diminishes the elevation in intracellular calcium (Ca2+) produced by BaP in HPBMC. In the present studies, we further defined the relationships between intracellular Ca2+ elevation produced by BaP and two immunotoxic P450-derived metabolites, BaP-7,8-diol and BPDE in the Daudi human B cell line. At 1, 4, and 18 h, both BaP-7,8-diol and BPDE produced a significant rise in intracellular Ca2+. This effect, however, was not observed with BaP or benzo(e)pyrene (BeP), a nonimmunotoxic PAH. To evaluate the potential role of cytochrome P450 metabolism in PAH-induced Ca2+ elevation, Daudi cells were pretreated with ANF for 4 h, followed by treatment with BaP metabolites for 18 h. ANF completely reversed the rise in Ca2+ produced by BaP-7,8-diol, but had no effect on the Ca2+ elevation produced by BPDE. These results suggest that BPDE may be the ultimate P450 metabolite responsible for Ca2+ elevation in human B cells. BaP-7,8-diol and BPDE were found to increase tyrosine phosphorylation in Daudi whole cell lysates and to increase tyrosine phosphorylation of two important Src-related protein tyrosine kinases (PTKs), Lyn and Syk. Inhibition of tyrosine phosphorylation by herbimycin A was found to largely prevent the increase in intracellular Ca2+ produced by BaP-7,8-diol and BPDE, suggesting that Ca2+ elevation is coupled to increased tyrosine phosphorylation in Daudi. BPDE was found to produce a statistically significant increase in tyrosine phosphorylation of Lyn and Syk within 10 min of exposure. Collectively, these data demonstrate that certain P450-derived metabolites of BaP may be responsible for PTK activation and an increase intracellular Ca2+, which may alter antigen receptor signaling in human B cells.

Download full-text PDF

Source
http://dx.doi.org/10.1006/taap.1997.8345DOI Listing

Publication Analysis

Top Keywords

tyrosine phosphorylation
24
intracellular ca2+
20
ca2+ elevation
20
bap-78-diol bpde
16
human cell
12
cytochrome p450
12
bap metabolites
12
ca2+ produced
12
increase tyrosine
12
ca2+
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!