Unlike most salamanders, the Mexican axolotl (Ambystoma mexicanum) fails to produce enough thyroxin to undergo anatomical metamorphosis, although a "cryptic metamorphosis" involving a change from fetal to adult hemoglobins has been described. To understand to what extent the development of the axolotl hemopoietic system is linked to anatomical metamorphosis, we examined the appearance and thyroxin dependence of class II molecules on thymus, blood, and spleen cells, using both flow cytometry and biosynthetic labeling followed by immunoprecipitation. Class II molecules are present on B cells as early as 7 weeks after hatching, the first time analyzed. At this time, most thymocytes, all T cells, and all erythrocytes lack class II molecules, but first thymocytes at 17 weeks, then T cells at 22 weeks, and finally erythrocytes at 26-27 weeks virtually all bear class II molecules. Class II molecules and adult hemoglobin appear at roughly the same time in erythrocytes. These data are most easily explained by populations of class II-negative cells being replaced by populations of class II-positive cells, and they show that the hemopoietic system matures at a variety of times unrelated to the increase of thyroxin that drives anatomical metamorphosis. We found that administration of thyroxin during axolotl ontogeny does not accelerate or otherwise affect the acquisition of class II molecules, nor does administration of drugs that inhibit thyroxin (sodium perchlorate, thiourea, methimazole, and 1-methyl imidazole) retard or abolish this acquisition, suggesting that the programs for anatomical metamorphosis and some aspects of hemopoietic development are entirely separate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s002510050368 | DOI Listing |
J Pharm Biomed Anal
January 2025
Department of Bioscience and Technology for Food, Agriculture and Environmental, University of Teramo, Via Renato Balzarini 1, Teramo 64100, Italy. Electronic address:
Oxidative stress (OS) arises mainly from exposure to reactive oxygen species (ROS) such as superoxide anion, hydroxyl radical, and hydrogen peroxide. These molecules can cause significant damage to proteins, DNA, and lipids, leading to various diseases. Cells fight ROS with detoxifying enzymes; however, an imbalance can cause damage leading to ischemic conditions, heart disease progression, and neurological disorders such as Alzheimer's disease.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
Direct cross-coupling reactions between two similar unactivated partners are challenging but constitute a powerful strategy for the creation of new carbon-carbon bonds in organic synthesis. [4]Dendralenes are a class of acyclic branched conjugated oligoenes with great synthetic potential for the rapid generation of structural complexity, yet the chemistry of [4]dendralenes remains an unexplored field due to their limited accessibility. Herein, we report a highly selective palladium-catalyzed oxidative cross-coupling of two allenes with the presence of a directing olefin in one of the allenes, enabling the facile synthesis of a broad range of functionalized [4]dendralenes in a convergent modular manner.
View Article and Find Full Text PDFNoncoding RNA
December 2024
Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis.
View Article and Find Full Text PDFAntibodies (Basel)
January 2025
MacroGenics Inc., Rockville, MD 20850, USA.
Bispecific antibodies represent a promising class of biologics for cancer treatment. However, their dual specificity and complex structure pose challenges in the engineering process, often resulting in molecules with good functional but poor physicochemical properties. To overcome limitations in the properties of an anti-5T4 x anti-CD3 (α5T4 x αCD3) DART molecule, a phage-display method was developed, which succeeded in simultaneously engineering cross-reactivity to the cynomolgus 5T4 ortholog, improving thermostability and the elevating expression level.
View Article and Find Full Text PDFZool Res
January 2025
Fisheries College, Jimei University, Xiamen, Fujian 361021, China. E-mail:
Small RNAs (sRNAs) are a class of molecules capable of perceiving environmental changes and exerting post-transcriptional regulation over target gene expression, thereby influencing bacterial virulence and host immune responses. is a pathogenic bacterium that poses a significant threat to aquatic animal health. However, the regulatory mechanisms of sRNAs in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!