Four different standardization approaches based on a competitive reverse transcription (RT)-PCR assay were compared with a noncompetitive assay based on an external standard curve. Criteria for assessment were accuracy in quantitation, correctness of recovery, sensitivity, dynamic range, reproducibility, throughput, and convenience of sample handling. As a model system, we used the 5'-noncoding region of hepatitis C virus (HCV) for amplification in all quantitative RT-PCRs. A computer program that allowed parallel data processing was developed. Surprisingly, all methods were found suitable for accurate quantitation and comparable with respect to the criterion correctness of recovery. All results differed only by a factor of about 2. The reason for this finding might be that all of our mimics, as well as the wild-type genome of HCV, exhibited exactly the same amplification and hybridization efficacy. Moreover, minimal competition occurred in our experiments over a 5-log dynamic range. A further topic of our investigation was the comparison of two different competitive RNA fragments, mimics, with regard to their suitability as internal standards. One was a heterologous mimic, in which only the primer binding sites were identical to the wild type. The second one was a homologous mimic identical to the wild type except for a small region used for differential hybridization, which was replaced by a permutated sequence of the same length. Both the homologous and heterologous internal mimics were found appropriate for an accurate competitive RT-PCR assay, provided that amplification efficacy, as well as capture efficacy, is proven identical for both analyte and mimic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC104598 | PMC |
http://dx.doi.org/10.1128/JCM.36.3.628-633.1998 | DOI Listing |
Talanta
January 2025
Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, People's Republic of China.
A novel strategy for cytochrome c selective recognition assisted with cucurbit[6]uril by host-guest interaction via N-terminal epitope imprinting and reversible addition-fragmentation chain transfer (RAFT) polymerization was developed. N-terminal nonapeptide of cytochrome c (GI-9) was used as the epitope template to achieve highly selective recognition of cytochrome c. As a common supramolecule in recent years, cucurbit[6]uril can encapsulate the butyrammonium group of lysine residue to capture the peptide and improve the corresponding spatial orientation by the host-guest interaction for GI-9 or cytochrome c recognition.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
Background: Neuroimmune interaction is an underestimated mechanism for lung diseases, and cryoablation is a competitive advantageous technique than other non-pharmacologic interventions for peripheral nerve innervating the lung. However, a lack of cryodenervation model in laboratory rodents leads to the obscure mechanisms for techniques used in clinic.
Method: Herein, we developed a novel practical method for mouse peripheral nerve cryoablation, named visualized and simple cryodenervation (VSCD).
Case Rep Womens Health
March 2025
Division of Minimally Invasive Gynecology Surgery, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, 460 Waterstone Drive, Hillsborough, NC 27278, USA.
Vulvodynia is a chronic vulvar pain condition that can be challenging to treat and often requires multi-modal interventions for symptom management. Low-dose naltrexone (LDN) is a reversible competitive antagonist at opioid receptors and may have utility in treating chronic pain conditions. In a specialty gynecology clinic at an academic medical center, patients with poorly controlled vulvodynia who had failed standard treatments were offered LDN as an adjunct pain treatment.
View Article and Find Full Text PDFChemMedChem
January 2025
CBS: Centre de Biologie Structurale, ABCIS, 29 rue de Navacelles, 34090, Montpellier, FRANCE.
Aminoglycoside-phosphotransferases (APHs) are a class of bacterial enzymes that mediate acquired resistance to aminoglycoside antibiotics. Here we report the identification of small molecules counteracting aminoglycoside resistance in Enterococcus casseliflavus. Molecular dynamics simulations were performed to identify an allosteric pocket in three APH enzymes belonging to 3' and 2'' subfamilies in which we then screened, in silico, 12,000 small molecules.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, Tsinghua University, Beijing 100084, China.
Single-cell metabolic analysis has not yet achieved the coverage of bulk analysis due to the diversity of cellular metabolites and the ionization competition among species. Direct ionization methods without separation lead to the masking of low-intensity species. By designing a capillary column emitter and introducing reverse-phase chromatography principles, we achieved the microseparation of lipophilic and hydrophilic metabolites and lowered the limit of detection of hydrophilic metabolites to the level of a single oocyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!