Simpson-Golabi-Behmel syndrome (SGBS) is an X linked disorder characterised by pre- and postnatal overgrowth, coarse facial features, and visceral and skeletal abnormalities. Like other overgrowth syndromes, in the SGBS there is an increased risk for developing neoplasia, mainly embryonic, such as Wilms tumour. We report a 3 year old male patient with SGBS and hepatocellular carcinoma, a previously undescribed tumour associated with the syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1051222 | PMC |
http://dx.doi.org/10.1136/jmg.35.2.153 | DOI Listing |
BMJ Case Rep
January 2025
Division of Neonatology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
We report a neonate evaluated for hepatomegaly during hospitalisation and was diagnosed to have hepatoblastoma, an uncommon childhood malignancy. The presence of dysmorphism, macrosomia and congenital heart defect led to the suspicion of congenital overgrowth conditions. The genetic evaluation revealed a pathogenic variant, conclusive of Simpson-Golabi-Behmel syndrome type 1 (SGBS1).
View Article and Find Full Text PDFGenes (Basel)
December 2024
Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia.
Introduction: Pathogenic variants in the gene are linked to a spectrum of syndromes that exhibit partial clinical overlap. Hemizygous loss-of-function variants are considered lethal in males, while heterozygous loss-of-function variants generally result in oro-facial-digital syndrome type 1. A reported phenotype, Simpson-Golabi-Behmel syndrome type 2, was published once but remains controversial, with many specialists questioning its validity and arguing about its continued listing in the OMIM database.
View Article and Find Full Text PDFDiabetologia
December 2024
Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Aims/hypothesis: Genome-wide association studies (GWAS) have identified hundreds of type 2 diabetes loci, with the vast majority of signals located in non-coding regions; as a consequence, it remains largely unclear which 'effector' genes these variants influence. Determining these effector genes has been hampered by the relatively challenging cellular settings in which they are hypothesised to confer their effects.
Methods: To implicate such effector genes, we elected to generate and integrate high-resolution promoter-focused Capture-C, assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA-seq datasets to characterise chromatin and expression profiles in multiple cell lines relevant to type 2 diabetes for subsequent functional follow-up analyses: EndoC-BH1 (pancreatic beta cell), HepG2 (hepatocyte) and Simpson-Golabi-Behmel syndrome (SGBS; adipocyte).
Rofo
August 2024
Section of Pediatric Radiology, Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!