This study examines the ability of human high density lipoproteins (HDL3) to deliver cholesteryl esters to human granulosa cells and describes the selective cholesterol pathway by which this occurs. Luteinized cells obtained from subjects undergoing in vitro fertilization-embryo transfer procedures were incubated with native HDL3 (or radiolabeled or fluorescently labeled HDL cholesteryl esters) to determine whether cells from humans (in which HDL is not the primary circulating lipoprotein species) can nevertheless interiorize and appropriately process cholesteryl esters for steroidogenesis. The results indicate that hormone-stimulated granulosa cells actively and efficiently use human HDL-derived cholesterol for progesterone production. More than 95% of the mass of HDL cholesteryl esters entering cells does so through the nonlysosomal (selective) pathway, i.e. cholesteryl esters released from HDL are taken up directly by the cells without internalization of apoproteins. Once internalized, the cholesteryl esters are either hydrolyzed and directly used for steroidogenesis or stored in the cells as cholesteryl esters until needed. The utilization of the internalized cholesteryl esters is a hormone-regulated event; i.e. luteinized human granulosa cells internalize and store large quantities of HDL-donated cholesteryl esters when available, but further processing of the cholesteryl esters (hydrolysis, re-esterification, or use in steroidogenesis) does not occur unless the cells are further stimulated to increase progesterone secretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jcem.83.3.4662 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!