We investigated the effect on membrane fluidity induced by D-myo-inositol derivatives (IP3, IP4, IP5, IP6). Fluidity was determined as the anisotropy of fluorescence polarisation from liposome model membranes labelled with DPH (1,6-diphenyl-1,3,5 hexatriene). IP3 (10(-10) to 10(-5) M) increased the membrane fluidity with a maximum effect at 10(-5) M. For IP4, IP5 and IP6, at concentrations less than 10(-6) M these derivatives increased the membrane viscosity (i.e. reduced fluidity). This effect was enhanced when the derivatives were incorporated in the vesicles, rather than added to the vesicle suspension. In this case IP5 and IP6 increased viscosity over the reference values. We conclude that inositol derivatives directly modified membrane fluidity which could play a role in their effects in biological systems, beside the one mediated by binding to specific receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15216549800201212 | DOI Listing |
Unlabelled: infections cause over 12,000 deaths and an estimated one billion dollars in healthcare costs annually in the United States. The cell membrane is an essential structure that is important for protection from the extracellular environment, signal transduction, and transport of nutrients. The polar membrane lipids of are ∼50% glycolipids, a higher percentage than most other organisms.
View Article and Find Full Text PDFUnlabelled: is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8).
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte 28660, España. Electronic address:
Mammalian hibernation offers a unique model for exploring neuroprotective mechanisms relevant to neurodegenerative diseases. In this study, we employed untargeted lipidomics with iterative tandem mass spectrometry (MS/MS) to profile the brain lipidome of Syrian hamsters across different hibernation stages: late torpor, arousal, and euthermia (control). Previously, a lipid species identified as methyl-PA(16:0/0:0) showed a significant increase during torpor, but its precise structure was unresolved due to technological constraints.
View Article and Find Full Text PDFMicroorganisms
January 2025
Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
As a food packaging sliding agent, erucamide is widely used in the field of food packaging, but the traditional synthesis method of erucamide faces the problems of insufficient raw materials and low yield of colza oil. Our laboratory has found that L2 has the potential to produce erucamide. This study aims to improve the ability of L2 to produce erucamide by adding various accelerants to optimize the fermentation conditions.
View Article and Find Full Text PDFBiomolecules
December 2024
Drug Chemistry and Technology Department, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.
essential oil is a natural substance able to inhibit the growth of several pathogens. This antimicrobial effect is often attributed to its ability to penetrate cellular structures and disrupt them. Although these properties are recognized as playing a key role in the mechanism of action of this substance, many unresolved issues still exist, and fundamental studies focused on such aspects are scarce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!