Functional organization of rat olfactory bulb glomeruli revealed by optical imaging.

J Neurosci

Department of Anatomy and Neurobiology and the Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.

Published: April 1998

The functional organization and synaptic physiology of olfactory bulb glomeruli were studied in rat in vitro slice preparations stained with the voltage-sensitive dye RH-155. Optical signals were recorded with a 100-element photodiode array at high temporal resolution. Pharmacological and ionic manipulations were used to investigate synaptic responses to stimulation of the olfactory nerve layer (ONL). ONL stimulation evoked a sodium-mediated compound action potential that propagated across the ONL and invaded individual glomeruli. This presynaptic volley evoked calcium-dependent synaptic responses the amplitudes of which were largest within the glomerular layer (GL); smaller amplitude responses were recorded in deeper layers of the olfactory bulb. Synaptic responses in the GL were attenuated by the non-NMDA ionotropic glutamate receptor antagonist CNQX; the residual component was suppressed by the NMDA glutamate receptor antagonist AP-5. The GABAA receptor antagonist bicuculline methiodide had little effect, whereas the GABAB receptor agonist baclofen dramatically attenuated ONL-evoked synaptic responses. The effects of baclofen were reversed by the GABAB receptor antagonist CGP35348. Paired-pulse depression of ONL-evoked synaptic responses in the GL was partially reversed by CGP35348. These findings suggest that olfactory nerve axons release glutamate to activate both NMDA and non-NMDA receptors on GL neurons, that GABAA receptor-mediated inhibition has little effect on these responses, and that GABAB receptor-mediated inhibition may act presynaptically on olfactory nerve axons to modulate their inputs to olfactory bulb neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6793098PMC
http://dx.doi.org/10.1523/JNEUROSCI.18-07-02602.1998DOI Listing

Publication Analysis

Top Keywords

synaptic responses
20
olfactory bulb
16
receptor antagonist
16
olfactory nerve
12
functional organization
8
bulb glomeruli
8
glutamate receptor
8
gabab receptor
8
onl-evoked synaptic
8
nerve axons
8

Similar Publications

Objective: This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity.

Methods: Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by memory loss and neuropsychiatric symptoms associated with cerebral amyloid-β (Aβ) and tau pathologies, but whether and how these factors differentially disrupt neural circuits remains unclear. Here, we investigated the vulnerability of memory and emotional circuits to Aβ and tau pathologies in mice expressing mutant human amyloid precursor protein (APP), Tau or both APP/Tau in excitatory neurons. APP/Tau mice develop age- and sex-dependent Aβ and phosphorylated tau pathologies, the latter exacerbated at early stages, in vulnerable brain regions.

View Article and Find Full Text PDF

Nanoplastic (NP) pollution poses serious health hazards to aquatic ecosystems, impacting various physiological systems of aquatic organisms. This review examines the complex interplay between NPs and different physiological systems. In the digestive system, NPs downregulate the hsp70-like gene in Mytilus galloprovincialis, leading to decreased metabolic processes and impaired digestion.

View Article and Find Full Text PDF

Estrogen-related receptor gamma is a regulator of mitochondrial, autophagy, and immediate-early gene programs in spiny projection neurons: Relevance for transcriptional changes in Huntington disease.

Neurobiol Dis

January 2025

Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Southern Research, Birmingham, AL 35205, USA. Electronic address:

Mitochondrial dysfunction, transcriptional dysregulation, and protein aggregation are hallmarks of multiple neurodegenerative disorders, including Huntington's disease (HD). Strategies are needed to counteract these processes to restore neuronal health and function in HD. Recent evidence indicates that the transcription factor estrogen-related receptor gamma (ERRγ/Esrrg) is required for normal expression of mitochondrial, synaptic, and autophagy genes in neurons.

View Article and Find Full Text PDF

Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!