We present here a new algorithm for segmentation of nuclear medicine images to detect the left-ventricle (LV) boundary. In this article, other image segmentation techniques, such as edge detection and region growing, are also compared and evaluated. In the edge detection approach, we explored the relationship between the LV boundary characteristics in nuclear medicine images and their radial orientations: we observed that no single brightness function (eg, maximum of first or second derivative) is sufficient to identify the boundary in every direction. In the region growing approach, several criteria, including intensity change, gradient magnitude change, gradient direction change, and running mean differences, were tested. We found that none of these criteria alone was sufficient to successfully detect the LV boundary. Then we proposed a simple but successful region growing method--Contour-Modified Region Growing (CMRG). CMRG is an easy-to-use, robust, and rapid image segmentation procedure. Based on our experiments, this method seems to perform quite well in comparison to other automated methods that we have tested because of its ability to handle the problems of both low signal-to-noise ratios (SNR) as well as low image contrast without any assumptions about the shape of the left ventricle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3453152PMC
http://dx.doi.org/10.1007/BF03168721DOI Listing

Publication Analysis

Top Keywords

region growing
16
nuclear medicine
12
medicine images
12
left-ventricle boundary
8
image segmentation
8
edge detection
8
change gradient
8
boundary detection
4
detection nuclear
4
images algorithm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!