In this retrospective study, we assessed the impact of each of three consecutive cycles of conventional-dose chemotherapy on CD34+ cells, colony-forming units granulocyte-macrophage (CFU-GM), and contaminating breast cancer cells collected in the leukapheresis products of patients with metastatic breast cancer. The patients subsequently underwent high-dose chemotherapy followed by autologous blood progenitor cell transplantation. We analyzed 172 leukapheresis products from 17 patients and have correlated the long-term clinical outcome with tumor cell contamination. The induction chemotherapy regimen consisted of three cycles of cyclophosphamide 750 mg/m2 i.v., epirubicin 100 mg/m2, and 5-fluorouracil (5-FU) 750 mg/m2 i.v., followed by 5 microg/kg body weight of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) daily until leukapheresis was completed. An average of 10 leukapheresis products (three to four collections after each cycle of chemotherapy) were obtained from each patient. Numbers of CD34+ cells, CFU-GM, and mononuclear cells (MNCs) in the leukapheresis products were determined at the time of collection. Aliquots from the same products were frozen and breast cancer cells were detected by immunocytochemistry with a cocktail of anti-cytokeratin antibodies (AE-1, AE-3, CAM 5.2, Keratin 8+18+19) using a standardized immunoalkaline phosphatase method. A minimum of 10(6) cells were examined by light microscopy and by at least two blinded observers. Cells were considered positive when immunostaining was detected in the cytoplasm and on the cell membrane, and cellular morphology was consistent with a malignant phenotype. Of the 172 samples analyzed, 13 of 57 (23%) leukapheresis products collected after cycle I were positive for tumor cells; 3 of 60 (5%) after cycle II; and 4 of 55 (7%) after cycle III. The likelihood of contamination by breast cancer cells after cycle I was significantly higher than after subsequent cycles of chemotherapy (p = 0.0052). Simultaneously, there was a significant decrease in quantity of CD34+ cells and CFU-GM (p < 0.0001 for both comparisons). Our study indicated that leukapheresis products collected after the second or third cycles of induction chemotherapy carry a significantly lower likelihood of tumor cell contamination, albeit the quantity of CD34+ cells or CFU-GM collected was also significantly reduced.

Download full-text PDF

Source

Publication Analysis

Top Keywords

leukapheresis products
28
breast cancer
20
cd34+ cells
16
tumor cell
12
cell contamination
12
cancer cells
12
cells cfu-gm
12
cells
11
progenitor cell
8
leukapheresis
8

Similar Publications

Apheresis is essential to conducting hematopoietic cell transplantation and genetically engineered cellular therapy procedures. Many patients and donors require central venous catheter (CVC) access for apheresis due to lack of adequate peripheral venous access. CVC placement has risks of associated complications and requires additional institutional resources and expertise.

View Article and Find Full Text PDF

Patients with large B-cell lymphoma (LBCL) progressing after anti-CD19 CAR T-cell (CAR19) therapy have poor outcomes. Subsequent CAR T-cell therapy shows promise, but the impact of residual CAR19 and early relapse remains unclear. We evaluated 37 CAR19-refractory LBCL patients who received anti-CD22 CAR T-cell (CAR22) in a phase 1b trial (NCT04088890).

View Article and Find Full Text PDF

Circulating Tumor Cells (CTCs) in blood encompass DNA, RNA, and protein biomarkers, but clinical utility is limited by their rarity. To enable tumor epitope-agnostic interrogation of large blood volumes, we developed a high-throughput microfluidic device, depleting hematopoietic cells through high-flow channels and force-amplifying magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.

View Article and Find Full Text PDF

Background: Chimeric antigen receptor T (CAR-T) cells have significantly advanced the treatment of cancers such as leukemia and lymphoma. Traditionally, T cells are collected from patients through leukapheresis, an expensive and potentially invasive process that requires specialized equipment and trained personnel. Although whole blood collections are much more technically straightforward, whole blood starting material has not been widely utilized for clinical CAR-T cell manufacturing, in part due to lack of manufacturing processes designed for use in a good manufacturing practice (GMP) environment.

View Article and Find Full Text PDF

Clotted Apheresis Hematopoietic Stem Cell Product.

J Clin Apher

December 2024

Division of Transfusion Medicine, Department of Pathology, City of Hope National Medical Center, Duarte, California, USA.

The majority of the time hematopoietic progenitor cells (HPC) are collected through leukapheresis, where anticoagulants are necessary to prevent clotting of the apheresis circuit and HPC product. Although clotting of the product is a possible rare complication surrounding the HPC cryopreservation process, there have been no reports of clotting of fresh HPC product after collection. We report a case of progressive clotting of a fresh matched unrelated donor HPC product.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!