N-myristoyl transferase (NMT) catalyzes the transfer of the fatty acid myristate from myristoyl-CoA to the N-terminal glycine of substrate proteins, and is found only in eukaryotic cells. The enzyme in this study is the 451 amino acid protein produced by Candida albicans, a yeast responsible for the majority of systemic infections in immuno-compromised humans. NMT activity is essential for vegetative growth, and the structure was determined in order to assist in the discovery of a selective inhibitor of NMT which could be developed as an anti-fungal drug. NMT has no sequence homology with other protein sequences and has a novel alpha/beta fold which shows internal two-fold symmetry, which may be a result of gene duplication. On one face of the protein there is a long, curved, relatively uncharged groove, at the center of which is a deep pocket. The pocket floor is negatively charged due to the vicinity of the C-terminal carboxylate and a nearby conserved glutamic acid residue, which separates the pocket from a cavity. These observations, considered alongside the positions of residues whose mutation affects substrate binding and activity, suggest that the groove and pocket are the sites of substrate binding and the floor of the pocket is the catalytic center.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nsb0398-213DOI Listing

Publication Analysis

Top Keywords

n-myristoyl transferase
8
substrate binding
8
pocket
5
crystal structure
4
structure anti-fungal
4
anti-fungal target
4
target n-myristoyl
4
transferase n-myristoyl
4
nmt
4
transferase nmt
4

Similar Publications

The current treatment of leishmaniasis is confronted with significant challenges, including limited efficacy, adverse effects, and parasite resistance to drugs. The search for alternative therapeutic options, including the utilization of natural products, has demonstrated considerable promise. In this study, the antileishmanial activity of the flavonoid hesperetin against Leishmania donovani, the causative agent of visceral leishmaniasis, was reported for the first time.

View Article and Find Full Text PDF

The mammarenavirus matrix Z protein plays critical roles in virus assembly and cell egress. Meanwhile, heterotrimer complexes of a stable signal peptide (SSP) together with glycoprotein subunits GP1 and GP2, generated via co-and post-translational processing of the surface glycoprotein precursor GPC, form the spikes that decorate the virion surface and mediate virus cell entry via receptor-mediated endocytosis. The Z protein and the SSP undergo N-terminal myristoylation by host cell N-myristoyltransferases (NMT1 and NMT2), and G2A mutations that prevent myristoylation of Z or SSP have been shown to affect the Z-mediated virus budding and GP2-mediated fusion activity that is required to complete the virus cell entry process.

View Article and Find Full Text PDF

Antimicrobial and Computational Studies of Newly Synthesized Benzotriazoles.

Indian J Microbiol

September 2024

Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab 144411 India.

Antimicrobial Resistance (AMR) due to non-responding viruses, fungi, bacteria and parasites leads to discovery of new antimicrobial medicines which can control the risk of disease spread, severe illness, disability and death. Heterocyclic chemistry has always been a continuous supplier of novel antimicrobial agents which are in great demand in pharma sector. Therefore, compounds such as 1-(Chloromethyl)-1H-Benzotriazole, 1; 1-((1-H-benzo[d][1,2,3]triazol-1-yl)methyl)phenyl hydrazine, 2; 1-((1-H-benzo[d][1,2,3]triazol-1-yl)methyl)hydrazine, 3; and N-(benzo[e][1,2,4]triazin-4(3-H)-ylmethylbenzenamine, 4 were designed, and synthesized through conventional and microwave-assisted methods.

View Article and Find Full Text PDF
Article Synopsis
  • - The Z protein of mammarenaviruses is crucial for virus assembly and exiting host cells, while glycoproteins GP1 and GP2, linked by a stable signal peptide, form spikes that help the virus enter host cells.
  • - Myristoylation, a modification performed by host cell enzymes, is essential for the function of both the Z protein and the stable signal peptide, with mutations that block this process negatively impacting virus budding and fusion.
  • - The study reveals that the NMT inhibitor DDD85464 shows strong antiviral effects against various mammarenaviruses, including LCMV, JUNV, and LASV, by disrupting Z protein activity and reducing viral entry processes.
View Article and Find Full Text PDF
Article Synopsis
  • The protein ACBD6 is important for lipid and protein acylation, but its exact role and effects of its defects on human health remain unclear.
  • Researchers found 45 individuals from 28 families with harmful mutations in ACBD6, leading to a variety of severe developmental and movement disorders.
  • Model organisms like zebrafish and Xenopus were used in studies to better understand ACBD6's function in protein modification and its localization in peroxisomes, which could help explain the associated disease symptoms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!