Previous work indicated that diacylglycerol (DG) molecules translocate across the cytoplasm of mammalian cells, a process relevant to the signalling role of this lipid as protein kinase C activator. Here we investigated the possible mechanism underlying DG translocation. We examined the interaction between 1,2-di-[1-14C]oleoyl-sn-glycerol and rat liver cytosol (rlc) using assays based on Lipidex-1000 and on coelution on Sepharose CL 6B. We measured high DG binding activity and found that it resides in cytosolic proteins and not in cytosolic lipids. Chromatography of rlc proteins on Sepharose CL 6B showed profiles in which the activity measured by either method coincided. Further, we showed that the DG-rlc protein interaction results in the stabilization of DG in a micellar form, eluting in the void volume of Sepharose CL 6B. Such stabilized micelles are reminiscent of insect lipophorins and may represent a new, thus far unrecognized, mode of lipid transport within living cells.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.1998.8155DOI Listing

Publication Analysis

Top Keywords

micellar lipoproteins
4
lipoproteins storage
4
storage translocation
4
translocation form
4
form intracellular
4
intracellular diacylglycerol
4
diacylglycerol previous
4
previous work
4
work indicated
4
indicated diacylglycerol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!