Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-0004.1976.tb00008.xDOI Listing

Publication Analysis

Top Keywords

linkage study
4
study marfan
4
marfan syndrome
4
linkage
1
marfan
1
syndrome
1

Similar Publications

A polysaccharide APS-1 II from a medicinal plant Angelica sinensis represents an interesting therapeutic agent against leukemia. However, the synthetic accessibility of the highly branched and complex APS-1 II polysaccharide with multiple 1, 2-cis-glycosidic linkages remains a difficult task, impeding the in-depth structure-activity relationship biological studies and the development of carbohydrates-based therapeutics against leukemia. Here, we report the first chemical synthesis of tridecasaccharide repeating unit together with shorter sequences 4-mer, 6-mer and 9-mer from APS-1 II polysaccharide via one-pot orthogonal glycosylation strategy based on glycosyl ortho-(1-phenylvinyl)benzoates, which precluded the potential issues such as aglycone transfer associated with one-pot assembly with thioglycosides.

View Article and Find Full Text PDF

Oligomerized Electron Acceptors with Alkynyl Linkages to Suppress Electron-Photon Coupling for Low-Energy-Loss Organic Solar Cells.

Angew Chem Int Ed Engl

January 2025

Beijing University of Chemical Technology, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, 100190, Beijing, CHINA.

Oligomerized electron acceptors, featuring molecular weights akin to polymers and well-defined chemical structures, have emerged as promising candidates for organic solar cells (OSCs) due to their consistent batch-to-batch reproducibility and improved thermal stability. In this study, we developed a series of oligomerized electron acceptors incorporating alkynyl linkages via an efficient Sonogashira coupling reaction between alkyne-substituted Y-type precursors and multi-substituted iodobenzenes. This method produced monomeric (S-Alkyne-YF), dimeric (D-Alkyne-YF), and trimeric (T-Alkyne-YF) configurations, enabling systematic control over molecular size and substituent arms.

View Article and Find Full Text PDF

Causes of hospitalization and mortality in persons with epilepsy: The EpiLink Bologna cohort, Italy.

Eur J Neurol

February 2025

Full Member of the European Reference Network for Rare and Complex Epilepsies (EpiCARE), IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.

Background: Epilepsy significantly impacts on morbidity and mortality. Understanding hospitalization and mortality risks in persons with epilepsy (PWE) is essential for improving healthcare strategies. We aimed to investigate the risk and causes of hospitalization and mortality in PWE compared to a matched general population cohort.

View Article and Find Full Text PDF

Understanding the relationship between structure regulation and electrochemical performance is key to developing efficient and sustainable sodium-ion batteries (SIBs) materials. Herein, seven Cobalt-M-based (M=V, Mn, Fe, Co, Ni, Cu, Zn) Prussian blue analogues (CoM-PBAs) are designed as anodes for SIBs via a universal low-energy co-precipitation approach with the strategic inclusion of 3d transition metals. Density Functional Theory (DFT) simulation and experimental validation reveal that a moderate p-band center of cyanide linkages (-CN-) is more favorable for Na+ intercalation and diffusion, while the d-band center of metal cations is linearly related to electrode stability.

View Article and Find Full Text PDF

1,3,4-Oxadiazole-based heterocyclic analogs (3a-3m) were synthesized cyclization of Schiff bases with substituted aldehydes in the presence of bromine and acetic acid. The structural clarification of synthesized molecules was carried out with various spectroscopic techniques such as FT-IR,H and C-NMR, UV-visible spectroscopy, and mass spectrometry. antifungal activity was performed against , and and analogs 3g, 3i, and 3m showed potent MIC at 200 µg/ml and excellent ZOI measurements of 17-21 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!