In this study, we demonstrated that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phosphatidylserine (PS)-binding protein and localized the putative PS-binding site involved in the membrane fusion induced by this enzyme. In an attempt to identify the PS-binding proteins, we raised polyclonal antibodies against a 15-amino-acid synthetic peptide (amino acid residues 390-403 of phosphatidylserine decarboxylase), which was shown to bind specifically to PS. One polyclonal antibody, designated aPSD-2, crossreacted with GAPDH, and its binding to GAPDH was inhibited by PS but not by other phospholipids such as phosphatidylethanolamine and phosphatidylinositol. Kinetic analysis of GAPDH binding to phospholipid membranes by measuring surface plasmon resonance showed that GAPDH associated with the phospholipid membrane containing PS rapidly (k[on] =2.8 X 10(4) M(-1) X s[-1]) and dissociated extremely slowly (k[off]=5.9 X 10(-5) s[-1]), giving a low dissociation constant (KD=2.6nM). GAPDH bound less effectively to membranes without PS with a dissociation constants of 0.2 microM. GAPDH-induced vesicle fusion was also inhibited by aPSD-2, suggesting that this antibody recognizes the putative PS-binding site on GAPDH involved in the enzyme-induced membrane fusion. Chemical fragmentation of GAPDH with cyanogen bromide followed by separation and sequence analysis of the reactive peptide resulted in the identification of a single reactive peptide with the sequence of amino acid residues 45-103 of GAPDH. Analysis of aPSD-2 binding to synthetic peptides derived from the corresponding region localized the antibody-binding site to amino acid residues 70-94 of GAPDH. Both the 25-amino-acid synthetic peptide (amino acid residues 70-94 of GAPDH) and polyclonal antibody raised against this peptide inhibited GAPDH-induced membrane fusion, suggesting that these amino acid residues play a crucial role in this membrane fusion process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021886 | DOI Listing |
Biol Res
January 2025
School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.
View Article and Find Full Text PDFAutophagy
January 2025
Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
The multi-step macroautophagy/autophagy process ends with the cargo-laden autophagosome fusing with the lysosome to deliver the materials to be degraded. The metazoan-specific autophagy factor EPG5 plays a crucial role in this step by enforcing fusion specificity and preventing mistargeting. How EPG5 exerts its critical function and how its deficiency leads to diverse phenotypes of the rare multi-system disorder Vici syndrome are not fully understood.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
Coacervation based on liquid-liquid phase separation (LLPS) has been widely used for the preparation of artificial protocells and to mimic the dynamic organization of membrane-free organelles. Most complex synthetic coacervates are formed through electrostatic interactions but cannot withstand high ionic strength conditions (>0.1 M).
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.
Studies on the mechanisms and regulation of functional assemblies of SNARE proteins mediating membrane fusion essentially make use of recombinant proteins and artificial phospholipid bilayers. We have developed an easy-to-use in vivo system reconstituting membrane fusion in living bacteria. It relies on the formation of caveolin-dependent intracytoplasmic cisternae followed by the controlled synthesis of members of the synaptic SNARE machinery.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
Many membrane proteins on the cell surface are constantly internalized from, and re-delivered to, the plasma membrane. This endocytic cycling, which relies on accurate SNARE-mediated fusion of vesicles containing cargo proteins, is highly important for the function of many proteins such as signaling receptors. While the SNARE proteins that mediate fusion during specific events, such as neurotransmitter and hormone release, in mammalian cells has been heavily studied, the SNARE proteins that mediate surface delivery of specific cargo such as the receptors for these released factors are still not known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!