The neuropathological staging model of Alzheimer's disease proposed by Braak and Braak [Acta Neuropathol (1991) 82:259] requires that the evolution of neurofibrillary pathology follows a predictable pattern that can be ordered in a regular regional hierarchy. We have operationalized the neuropathological staging system to permit testing of its validity. Forty-two cases were derived from an epidemiological study of cognitive function in an elderly population for which post-mortem brain tissue was collected. Cases with neuropathological diagnoses other than Alzheimer's disease and normal aging were excluded. Neurofibrillary tangle counts were determined in all cortical laminae and regions used for staging. There was a significant correlation between the overall extent of neurofibrillary pathology and the number of regions affected. There were frequent order violations in the proposed hierarchy: 19 instances (45%) involving entorhinal and transentorhinal cortices, and 16 instances (38%) involving CA1 of hippocampus and entorhinal cortex. Only 6 out of 42 cases conformed in all regions to the expected hierarchy. Nevertheless, 90% of the cases had 2 order violations or less, supporting the approximate validity of the hierarchy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004010050780 | DOI Listing |
Neuropathology
January 2025
Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan.
The degeneration of pyramidal tracts has been reported in frontotemporal lobar degeneration with TDP-43 (TAR DNA-binding protein 43) pathology (FTLD-TDP) type C. Herein, we examined the detailed pathology of the primary motor area and pyramidal tracts in the central nervous system in four autopsy cases of FTLD-TDP type C, all of which were diagnosed by neuropathological, biochemical, and genomic analyses. Three patients showed right dominant atrophy of the frontal and temporal lobes, while the other patient showed left dominant atrophy.
View Article and Find Full Text PDFMol Neurodegener
January 2025
Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.
Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.
JAMA Neurol
January 2025
Department of Radiology, Mayo Clinic, Rochester, Minnesota.
Importance: Although 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established cross-sectional biomarker of brain metabolism in dementia with Lewy bodies (DLB), the longitudinal change in FDG-PET has not been characterized.
Objective: To investigate longitudinal FDG-PET in prodromal DLB and DLB, including a subsample with autopsy data, and report estimated sample sizes for a hypothetical clinical trial in DLB.
Design, Setting, And Participants: Longitudinal case-control study with mean (SD) follow-up of 3.
Fluids Barriers CNS
January 2025
Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.
Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.
Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.
Nat Commun
January 2025
Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
Aging increases the risk for Alzheimer's disease (AD), driving pathological changes like amyloid-β (Aβ) buildup, inflammation, and oxidative stress, especially in the prefrontal cortex (PFC). We present the first subcellular-resolution spatial transcriptome atlas of the human prefrontal cortex (PFC), generated with Stereo-seq from six male AD cases at varying neuropathological stages and six age-matched male controls. Our analyses revealed distinct transcriptional alterations across PFC layers, highlighted disruptions in laminar structure, and exposed AD-related shifts in layer-to-layer and cell-cell interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!