Intrinsic circuitry of the superior colliculus: pharmacophysiological identification of horizontally oriented inhibitory interneurons.

J Neurophysiol

Department of Anatomy, Visual/Motor Neuroscience Division, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298-0709, USA.

Published: March 1998

Much of what is known about the organization of the superior colliculus is based on the arrangement of its external connections. Consequently, there is little information regarding pathways that remain intrinsic to it, even though recent data suggest that a horizontally oriented local circuit may mediate the functional reciprocity among fixation and saccade-related neurons. Therefore, the present experiments sought physiological evidence for neurons intrinsic to the superior colliculus that might participate in a horizontally oriented local circuit. Parasagittal slices of the ferret superior colliculus were prepared for in vitro recording, and 125 intermediate/deep layer neurons were examined in response to electrical stimulation rostral or caudal to the recording site. A substantial proportion (37%) of neurons responded with a prolonged period (means = 59.3 +/- 30 ms) of poststimulus suppression of spontaneous action potential activity. Of the suppressed neurons, most (53%) were disinhibited when the excitatory amino acid receptor antagonists D-2-amino-5-phosphonovaleric acid (D-APV) and 6-nitro-7 sulphamoylbeno[f]-quinoxaline-2,3-dione (NBQX) were administered, indicating that excitatory input to inhibitory interneurons was blocked. Of the neurons that received inputs from inhibitory interneurons, all had their suppressive responses decreased or eliminated by the gamma-aminobutyric acid antagonist, bicuculline. Finally, severing the superficial layers from the slice had no effect on intermediate layer responses to intrinsic stimulation. These data provide physiological evidence for the presence of horizontally oriented inhibitory interneurons in the superior colliculus. Furthermore, these findings are consistent with the hypothesis that an intrinsic circuit, routed through interneurons, might account for the reciprocal inhibition observed among fixation and saccade-related neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.1998.79.3.1597DOI Listing

Publication Analysis

Top Keywords

superior colliculus
20
horizontally oriented
16
inhibitory interneurons
16
oriented inhibitory
8
oriented local
8
local circuit
8
fixation saccade-related
8
saccade-related neurons
8
physiological evidence
8
neurons
7

Similar Publications

Volumetric alterations in auditory and visual subcortical nuclei following perinatal deafness in felines.

Neuroimage

January 2025

Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada. Electronic address:

In response to sensory deprivation, the brain adapts to efficiently navigate a modified perceptual environment through a process referred to as compensatory crossmodal plasticity, allowing the remaining senses to repurpose deprived regions and networks. A mechanism that has been proposed to contribute to this plasticity involves adaptations within subcortical nuclei that trigger cascading effects throughout the brain. The current study uses 7T MRI to investigate the effect of perinatal deafness on the volumes of subcortical structures in felines, focusing on key sensory nuclei within the brainstem and thalamus.

View Article and Find Full Text PDF

Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells (RGCs), with intraocular pressure (IOP) being its primary risk factor. Despite controlling IOP, the neurodegenerative process often continues. Therefore, substances with neuroprotective, antioxidant, and anti-inflammatory properties could protect against RGC death.

View Article and Find Full Text PDF

Stronger premicrosaccadic sensitivity enhancement for dark contrasts in the primate superior colliculus.

Sci Rep

January 2025

Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller Str. 25, 72076, Tübingen, Germany.

Microsaccades are associated with enhanced visual perception and neural sensitivity right before their onset, and this has implications for interpreting experiments involving the covert allocation of peripheral spatial attention. However, the detailed properties of premicrosaccadic enhancement are not fully known. Here we investigated how such enhancement in the superior colliculus depends on luminance polarity.

View Article and Find Full Text PDF

Probabilistically constrained vector summation of motion direction in the mouse superior colliculus.

Curr Biol

January 2025

Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA; Department of Biology, University of Virginia, Charlottesville, VA 22904, USA. Electronic address:

Visual motion is a crucial cue for the brain to track objects and take appropriate actions, enabling effective interactions with the environment. Here, we study how the superior colliculus (SC) integrates motion information using asymmetric plaids composed of drifting gratings of different directions and speeds. With both in vivo electrophysiology and two-photon calcium imaging, we find that mouse SC neurons integrate motion direction by performing vector summation of the component gratings.

View Article and Find Full Text PDF

Unlabelled: Multiple sources innervate the visual thalamus to influence image-forming vision prior to the cortex, yet it remains unclear how non-retinal and retinal input coordinate to shape thalamic visual selectivity. Using dual-color two-photon calcium imaging in the thalamus of awake mice, we observed similar coarse-scale retinotopic organization between axons of superior colliculus neurons and retinal ganglion cells, both providing strong converging excitatory input to thalamic neurons. At a fine scale of ∼10 µm, collicular boutons often shared visual feature preferences with nearby retinal boutons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!