Apoptosis requires the activation of caspases (formerly interleukin 1beta-converting enzyme-like proteases), in particular those related to the caspase-3/7/6 subfamily. Recent data, however, revealed that, although caspase-specific inhibitors delay apoptosis, they are often incapable of preventing it. To obtain evidence for caspase-independent steps of apoptosis, we artificially created a high amount of short-lived or aberrant proteins by blocking the ubiquitin degradation pathway. A temperature-sensitive defect in the ubiquitin-activating enzyme E1 induced apoptosis independent of the activation of caspase-3 and -6 and the cleavage of their respective substrates poly(ADP-ribose) polymerase and lamin A. In addition, neither the caspase 3/7-specific inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone nor the general caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone were capable of blocking this type of cell death. By contrast, Bcl-2 overexpression effectively protected cells from apoptosis induced by a defect in the E1 enzyme at the nonpermissive temperature. Bcl-2 acted downstream of the accumulation of short-lived or aberrant proteins because it did not prevent the overexpression of the short-lived proteins p53, p27(kip1), and cyclins D1 and B1 under conditions of decreased ubiquitination. These results suggest the existence of short-lived proteins that may serve the role of caspase-independent effectors of apoptosis and attractive targets of the death-protective action of Bcl-2.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.273.11.6121DOI Listing

Publication Analysis

Top Keywords

short-lived aberrant
8
aberrant proteins
8
short-lived proteins
8
apoptosis
7
defects ubiquitin
4
ubiquitin pathway
4
pathway induce
4
induce caspase-independent
4
caspase-independent apoptosis
4
apoptosis blocked
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!